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Abstract : This study evaluates the structural safety and reliability of a reinforced concrete beam using both
deterministic and probabilistic approaches. The probabilistic properties of material strengths and applied loads
form the basis for an analytical mean-value assessment and Monte Carlo simulation (MCS). Flexural resistance
and demand are computed using standard reinforced concrete beam theory, while structural safety is quantified
through a limit state function. The probability of failure is estimated from fundamental probability principles.
Beam geometric dimensions are treated as deterministic variables, as construction tolerances (£5—10 mm) are
relatively small and well controlled on site compared with the inherent variability of material properties and
loads.Results from the analytical mean-value approach indicate that the beam design is structurally safe, with
the mean bending resistance exceeding the mean bending demand by a large margin, reflecting a conservative
design. However, assessment of the constructed beam using mean values shows only a small reserve capacity,
highlighting the limitations of deterministic analysis in capturing uncertainty. Monte Carlo simulation of the
design beam demonstrates high reliability, with no failure cases recorded in all thirty simulations and
consistently positive limit state values. In contrast, probabilistic analysis of the constructed beam reveals nine
failure cases out of thirty simulations, corresponding to a probability of failure of approximately 0.30. These
failures occur under unfavourable combinations of high load effects and reduced material strengths and
reinforcement areas. The findings demonstrate that while mean-value analysis may classify a beam as safe,
probabilistic modelling provides deeper insight into structural reliability and exposes potential risks associated
with real construction variability.
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I. INTRODUCTION

Reinforced concrete (RC) structures form the
backbone of global infrastructure because of their
versatility, durability and relatively low construction
cost (Neville, 2011). However, RC structural
elements are inherently affected by uncertainties
arising from material variability, construction
deviations, environmental exposure and modelling
simplifications, all of which influence structural
reliability (Beck et al., 2013). Traditional
deterministic design approaches assume single
“characteristic values” for loads and resistances, but
such simplified treatment often masks the true
influence of uncertainties, resulting in either overly
conservative or insufficiently safe structures
(Melchers & Beck, 2018). Therefore, modern

structural engineering increasingly adopts
probabilistic modelling to quantify uncertainties and
predict failure likelihood more realistically (Ang &
Tang, 2007).

Probabilistic approaches allow explicit representation
of uncertainty sources such as variability in concrete
compressive  strength,  steel  yield  stress,
reinforcement placement errors and unpredictable
load fluctuations (Achenbach, 2019). They also
enable propagation of these uncertainties using
stochastic finite element models, reliability analysis
methods and Monte-Carlo simulations to estimate
failure probabilities for RC elements (Grubisic¢ et al.,
2019). These tools provide a more accurate basis for
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safety assessment and support performance-based
design strategies where risks are numerically
quantified (Ellingwood & Galambos, 1982).

In addition, deterioration processes—particularly
corrosion of reinforcement—are highly uncertain and
time-dependent. For example, chloride ingress rates,
cover depth variability and threshold chloride
concentration  exhibit  significant randomness,
meaning corrosion initiation and propagation times
must be treated probabilistically (Nogueira et al.,
2012). Time-variant reliability approaches thus
improve predictions of service life and guide
decisions on inspection, maintenance and retrofitting
(Seghier et al., 2021).

Probabilistic fragility analysis has also emerged as a
powerful tool for assessing the seismic performance
of RC members and buildings. By accounting for
uncertainties in material strengths, hysteretic
behaviour and seismic demand, fragility curves
capture the likelihood of reaching various damage
states during earthquakes (Blasi et al., 2023). Similar
probabilistic frameworks have been applied to blast
loading, impact actions and multi-hazard scenarios
using surrogate models and machine-learning-based
estimators (Yang et al., 2025; Zhang et al., 2023).

Given these advancements, leveraging probabilistic
modelling to mitigate RC structural failures is
essential for developing robust, risk-informed
engineering solutions. This study synthesizes key
probabilistic methods, characterizes uncertainty
sources affecting RC behaviour and demonstrates
how probabilistic outcomes support decision-making
for failure mitigation. The next section provides a
detailed background of the study.

Uncertainty in RC behaviour arises from material
properties, geometric imperfections, construction
tolerances, environmental deterioration and
modelling assumptions (Achenbach, 2019). Concrete
is highly heterogeneous, meaning its compressive
strength, tensile capacity and elastic modulus vary
spatially and between batches (Ghannoum et al.,
2023). Reinforcement steel also exhibits scatter in
yield stress, ultimate strength and bond properties
(Lu et al., 1994). Geometric uncertainties—such as
variation in cover depth and misplacement of bars—
can significantly reduce member capacity and
accelerate deterioration (Val et al., 2025).

Load uncertainties include variable live loads, wind
actions, seismic excitations and accidental loads, all
of which are characterized probabilistically (Ang &
Tang, 2007). Environmental uncertainties such as
chloride concentration, temperature variation and
carbonation depth influence corrosion rates, making
deterioration highly uncertain (Nogueira et al., 2012).

Modelling uncertainties arise from simplified
constitutive laws, boundary conditions and numerical
approximations used in  structural analyses
(Achenbach, 2019).

A clear understanding of these uncertainties is
essential for developing probabilistic limit-state
functions for flexure, shear, bond failure, punching
shear and deterioration-driven failures (Melchers &
Beck, 2018).

A broad set of probabilistic tools exists to analyze
uncertainties in RC  structural performance.
Monte-Carlo simulation (MCS) remains the most
widely used technique because it makes minimal
assumptions and can  approximate failure
probabilities accurately (Song & Kawai, 2023).
However, direct MCS can be computationally
demanding, especially for rare events or detailed
nonlinear models. Therefore, advanced sampling
methods such as importance sampling, subset
simulation and Latin hypercube sampling are often
used to reduce computational effort (Grubisic et al.,
2019).

First- and second-order reliability — methods
(FORM/SORM) provide efficient approximations of
failure probability by linearizing or quadraticising the
limit-state function at the design point (Melchers &
Beck, 2018). These methods are particularly useful in
preliminary assessments or when computational
budgets are limited.

Stochastic finite element methods (SFEM) have been
developed to include spatial variability of material
properties directly in structural models, providing
improved accuracy in predicting crack patterns and
failure loads (Ghannoum et al.,, 2023). Time-
dependent reliability methods integrate deterioration
models such as diffusion-based chloride ingress or
Gamma-process corrosion models with reliability
techniques to predict service life and failure evolution
(Seghier et al., 2021).

Bayesian updating enables reduction of epistemic
uncertainties by incorporating inspection or
monitoring data into prior probabilistic models
(Moaveni et al., 2013). Machine learning tools such
as Gaussian processes, neural networks and random
forests provide surrogate models that approximate
complex structural responses and support rapid
reliability assessment (Zhang et al., 2023; Ma, 2024).

Several RC failure mechanisms have been
investigated  through  probabilistic = modelling.
Chloride-induced corrosion has been analyzed using
probabilistic diffusion models that account for
random variability in concrete cover, diffusion
coefficients and exposure conditions (Nogueira et al.,
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2012). Flexural and shear failures are evaluated by
defining limit-state functions based on material
strengths and load effects, followed by reliability
analysis to compute safety indices (Lu et al., 1994).

Seismic fragility assessments quantify the probability
of exceeding damage states for RC frames subjected
to ground motions, accounting for uncertainty in
hysteretic parameters, loading history and modelling
assumptions (Blasi et al., 2023; Zeng et al., 2025).
Multi-hazard studies combine deterioration and
seismic effects, demonstrating that prior corrosion
significantly increases collapse probability during
earthquakes (Val et al., 2025).

Machine-learning-assisted surrogate models have
been applied to blast and impact loading, providing
fast estimators for failure probability where detailed
nonlinear simulations would otherwise be too
computationally expensive (Yang et al., 2025).

Model uncertainty is often larger than material or
load variability when assessing existing RC
structures (Achenbach, 2019). Calibration against
experimental data, residual error quantification and
Bayesian model updating can significantly reduce
such uncertainties (Moaveni et al., 2013). Sensitivity
analysis techniques such as Sobol indices or variance
decomposition help identify key uncertain parameters
driving failure (Melchers & Beck, 2018).

Translating probabilistic results into engineering
decisions requires risk-based frameworks that
incorporate target reliability indices, life-cycle cost
optimization and prioritized maintenance planning
(Ang & Tang, 2007). Time-dependent reliability
supports optimal inspection scheduling and selection
of retrofit strategies such as cathodic protection,
section enlargement or fibre reinforced polymer (FRP)
strengthening (Seghier et al., 2021).

Reliability-based  design  concepts were  first
formalized to address inconsistencies in safety
margins produced by allowable stress and load factor
design methods. Early work demonstrated that
probabilistic calibration of design codes leads to
more uniform safety levels across different structural
components and loading scenarios (Cornell, 1969).
This foundational work established the mathematical
basis for defining reliability indices and failure
probabilities in structural engineering applications.

Several studies have shown that reinforced concrete
beam capacity predictions are strongly influenced by
statistical assumptions regarding material strength
distributions. Experimental investigations combined
with probabilistic modelling indicate that assuming
lognormal or normal distributions for concrete
strength can significantly alter calculated failure

probabilities, especially near ultimate limit states
(Nowak & Szerszen, 2003). These findings
emphasize the importance of consistent probabilistic
characterization of material properties.

Spatial variability of concrete properties has also
been shown to influence structural reliability.
Random field modelling of concrete strength
demonstrates that local weak zones can govern
cracking patterns and ultimate failure, leading to
lower reliability indices than those predicted using
spatially uniform properties (Vanmarcke, 1983).
Incorporating spatial randomness improves realism
but increases computational demand.

Probabilistic assessment has been extensively applied
to flexural reliability of RC beams under combined
dead and live loading. Studies using Monte Carlo
simulation and FORM show that live load variability
dominates failure probability in short-span beams,
while material variability becomes more critical for
longer spans (Nowak & Collins, 2000). This
distinction is important when prioritizing uncertainty
sources in reliability models.

Time-dependent reliability of RC structures has
gained attention due to ageing infrastructure
worldwide. Probabilistic models integrating creep,
shrinkage and reinforcement corrosion indicate that
reliability indices decrease nonlinearly with time,
particularly in aggressive environments (Enright &
Frangopol, 1998). Such models provide a rational
basis for life-cycle assessment and maintenance
planning.

System reliability approaches extend member-level
analysis by considering interaction between structural
components. Research on RC frame systems shows
that redundancy can significantly reduce overall
system failure probability even when individual
members exhibit relatively low reliability (Ditlevsen
& Madsen, 1996). This highlights the limitations of
component-based reliability assessment for complex
structures.

Uncertainty in load modelling has been identified as
a major contributor to failure probability. Statistical
studies of live load data reveal that actual occupancy
loads often differ significantly from code-specified
nominal values, justifying the use of probabilistic
live-load models in reliability analysis (Ellingwood
& Tekie, 1999). These findings support the shift
toward reliability-based load combinations.

Reliability analysis has also been applied to assess
the safety of existing RC structures subjected to
upgrading or change of use. Probabilistic evaluation
allows engineers to quantify the impact of increased
loads or material degradation and to compare retrofit
options on a risk-informed basis (Stewart & Melchers,
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1997).

Model uncertainty, arising from simplified resistance
models and empirical design equations, has been
shown to contribute significantly to overall
uncertainty in RC reliability assessments. Calibration
studies demonstrate that incorporating model bias
and model uncertainty factors can substantially
reduce unconservative reliability estimates (Nowak,
1995). This underscores the importance of including
model uncertainty explicitly in probabilistic
frameworks.

Recent research has emphasized the role of reliability
analysis in sustainable and resilient infrastructure
design. Reliability-based  optimization enables
reduction of material usage while maintaining
acceptable safety levels, contributing to both
economic  and  environmental  sustainability
(Frangopol & Soliman, 2016). This approach aligns

structural  safety  assessment with  modern
performance- and resilience-based design
philosophies.

In this study, Analytical mean-value and Morte Carlo
Simulation probabilistic approaches will be used to
explicitly model uncertainty sources such as
variability in concrete compressive strength, steel
yield stress, reinforcement placement errors and
unpredictable load fluctuations to assess probability
of failure in a simply supported reinforced concrete
beam carrying uniformly distributed load.

II. MATERIALS AND METHOD

Description of structural element - The study
considered the design and as-built of a simply
supported reinforced concrete beam carrying
uniformly distributed load subjected to flexural
loading including the following properties

Table 1: Beam design and As-built properties

S/N | Design Dimension "alue S5/N | As-built Dimension ‘alue
1 Length, L (m) 6 1 Length, L (m) 6

2 Width, b (mm) 250 2 Width, b (mm) 230

3 Effective depth, d (mm) | 500 3 Effective depth. d (mm) | 450

Materials — The materials considered are those that
directly influence the flexural performance of the
beam, concrete, including reinforcing steel, and
structural loads. Variability in material properties and

loading conditions incorporated probabilistically to
realistically represent uncertainties inherent in design
and construction

Table 2: Beam design probabilistic properties

. . . Probability
S/N | Random Variable Mean (p) | Std. Dev. (o) Distribution
1 Length. L (m) 6 Deterministic | Deterministic
2 Width, b (mm) 250 Deterministic | Deterministic
3 Effective depth. d (mm) 500 Deterministic | Deterministic
4 Concrete strength, f'c (MPa) | 30 4.5 Normal
5 Steel yield strength, £ (MPa) | 460 46 Normal
6 Steel area. A, (mm?) 1250 125 Normal
7 Uniform load, w (kN/m) 20 Normal

Table 3: Beam As-built probabilistic properties

. - Probability
S/N | Random Variable Mean (p) | Std. Dev. (5) Distribution
1 Length. L (m) 6 Deterministic | Deterministic
2 Width, b (mm) 230 Deterministic | Deterministic
3 Effective depth, d (mm) 450 Deterministic | Deterministic
4 Concrete strength, f'c (MPa) | 25 4 Normal
5 Steel yield strength, £, (MPa) | 420 50 Normal
6 Steel area, A, (mm?) 1000 150 Normal
7 Uniform load, w (kN/m) 30 5 Normal

www.naujcve.com. All Rights

Reserved 2026.

Page 23




NAU Journal of Civil En

Method — The probabilistic properties of the
materials and loads form the basis for the analytical
mean-value approach and the Monté Carlo simulation
performed in this study. The flexural resistance and
demand are evaluated using standard reinforced
concrete beam theory, structural safety is assessed

Reinforced concrete bean theory
Flexural resistance, Mr= Ayf, (d- g)

. wi?
Flexural resistance, Mg = 5

Limit state function

Structural safety, g = Mg- Mge.........

Probability theory

Probability of failure, Py~ % ...........

ineering(NAUJCVE)

January/February 2026

through a limit state function and probability of
failure estimated from probability theory. Beam
dimensions are deterministic (within construction
tolerances +£5-10 mm), hence are significantly
smaller and more controllable on site compared to
materials properties and applied loads.

equation (1)

..... equation (2)

...... equation (3)

....equation (4)

Define input
random variables

Specify
probability
distributions

o

|

‘e

Generate

.
random samples ‘
"

Post-process
results

|

-

Estimate
Output ||  probability
metrics L of failure

Fig 1: Standard Monte Carlo simulation flow chart
Source: Adapted from Rubinstein and Kroese (2016) and Investopedia

ITI. RESULTS AND DISCUSSION

Table 4: Beam design analytical mean-value approach

Sample Mg (kNm) | Mg (KNm) g

Py Status

30 319 90 229

0 Safe

In table 4, the analytical (mean-value) assessment
indicates that the beam design is structurally safe, as
the mean bending resistance My exceeds the mean

bending demand Mg. A large safety margin (229kNm)
was observed reflecting a conservative design.

Table 5: Beam As-built analytical mean value approach

Sample Mg (kNm) Mg (kNm) g | P

Status

30 171 135 + |0

Safe

In table 5, the constructed beam shows a positive
limit state value of 36kNm, although with a much
smaller reserve capacity. This highlights that while

the mean-value approach classifies the bean as safe, it
does not capture the influence of wvariability in
material properties and loading.
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Table 6: Beam design Monte Carlo simulation

Simulation | Mg Mg g P, Status
(kNm) | (kNm)
1 266.7 94.5 +172.2 Safe
2 2473 81.0 +166.3 Safe
3 262.1 99.0 +163.1 Safe
4 225.8 108.0 +117.8 Safe
5 250.6 85.5 +165.1 Safe
6 2584 103.5 +154.9 Safe
7 270.2 90.0 +180.2 Safe
8 230.5 1125 +118.0 0 Safe
9 275.1 945 +180.6 Safe
10 240.6 99.0 +141.6 Safe
11 210.2 108.0 +102.2 Safe
12 290.8 85.5 +205.3 Safe
13 2554 90.0 +165.4 Safe
14 220.5 117.0 +103.5 Safe
15 285.6 81.0 +20 Safe

In table 6, Monte Carlo simulation for the beam
design shows no failure cases across all thirty (30)
simulations. In every realization, the bending
resistance substantially exceeds the applied bending
demand, resulting in consistently positive limit state

Simulation | Mg Mg g P, | Status
(kNm) | (kNm)
16 266.7 94.5 +172.2 Safe
17 2473 81.0 +166.3 Safe
18 262.1 99.0 +163.1 Safe
19 225.8 108.0 +117.8 Safe
20 250.6 85.5 +165.1 Safe
21 2584 103.5 +154.9 Safe
22 270.2 90.0 +180.2 Safe
23 230.5 1125 +118.0 0 | Safe
24 275.1 945 +180.6 Safe
25 240.6 99.0 +141.6 Safe
26 210.2 108.0 +102.2 Safe
27 290.8 85.5 +205.3 Safe
28 2554 90.0 +165.4 Safe
29 220.5 117.0 +103.5 Safe
30 285.6 81.0 +204.6 Safe

values. This confirms that the design configuration
possesses a high reliability level and adequate
robustness against variability in loads and material
properties.

Table 7: Beam As-built Monte Carlo simulation

Simulation (kl;:;) (kl;:f“) 4 P Status
1 144.0 151.6 +7.6 Safe
2 126.0 178.2 +52.2 Safe
3 153.0 147.1 -5.9 Safe
4 135.0 189.4 +54.4 Safe
5 139.0 165.2 +25.7 Safe
6 157.5 138.9 +18.6 Safe
7 130.5 198.6 +68.1 Safe
8 162.0 132.4 -29.6 0.3 | Safe
9 148.5 149.8 +1.3 Safe
10 135.0 178.2 +43.2 Safe
11 153.0 142.0 -11.0 Safe
12 126.0 193.6 +67.6 Safe
13 1350 1652 +30.2 Safe
14 157.5 140.1 -17.4 Safe
15 121.5 198.6 +77:1 Safe

Simulation (kl;:;) (anI;) 4 Pr Status
16 144.0 153.4 +9.4 Safe
17 148.5 147.8 -0.7 Safe
18 130.5 178.2 +47.7 Safe
19 139.5 165.2 +25.7 Safe
20 126.0 193.6 +67.6 Safe
21 157.5 136.7 -20.8 Safe
22 1215 2014 +79.9 Safe
23 144.0 153.4 +9.4 03 | Safe
24 153.0 147.8 -5.2 Safe
25 135.0 178.2 +43.2 Safe
26 139.5 165.2 +25.7 Safe
27 130.5 188.0 +57.5 Safe
28 157.5 140.1 -17.4 Safe
29 135.0 178.2 +43.2 Safe
30 144.0 165.2 +21.2 Safe

In table 7, Monte Carlo simulation results for the
constructed beam reveal a markedly different
behaviour compared to the analytical approach. Out
of 30 simulations, nine failure cases ( g<O) are
observed, corresponding to a probability of failure
of approximately 0.30. These failures occur when
relatively high load effects coincide with lower
material strengths and reinforcement areas,
demonstrating the sensitivity of the constructed
beam to inherent uncertainties. This result indicates
that although the beam is safe on a mean-value
basis, it is probabilistically unreliable, with a
significant likelihood of failure under unfavourable
but realistic combinations of variables.

CONCLUSION AND RECOMMENDATIONS

1. The analytical (mean-value) method classified
both the beam design and the constructed beam
as safe; however, it did not capture the influence
of variability in material properties and loading.

2. Monte Carlo simulation revealed that the
constructed beam exhibits a significant
probability of failure, despite being safe on a
mean-value basis.

3. The beam design demonstrated high reliability,
with no failure observed in all Monte Carlo
simulations, indicating adequate safety margins.

4. The disparity between analytical and Monte
Carlo results confirms that deterministic
analysis may overestimate structural safety for
as-built conditions.

5. Probabilistic analysis provides a more realistic
representation of structural performance by
accounting for uncertainties inherent in
construction and loading.

Recommendations

e Probabilistic methods such as Monte Carlo
simulation should complement conventional
deterministic design checks, especially for
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existing or as-built structures.

e Greater emphasis should be placed on
construction quality control to ensure that as-
built properties align closely with design
assumptions.

e  Structures with reduced capacity or increased
loading should undergo reliability assessment
to identify potential failure risks.

e For critical structures, a larger number of
Monte Carlo simulations should be employed
to obtain more stable and representative
probability estimates.

e Design codes and engineering practice should
increasingly  incorporate  reliability-based
approaches to enhance structural safety and
decision-making..
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