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ABSTRACT: The use of waste glass in concrete offers a sustainable solution for reducing environmental waste
while conserving natural resources. This study investigates the mechanical performance of concrete in which
crushed waste glass is used as a partial replacement for natural fine aggregate at replacement levels of 0%, 5%,
15%, and 20%. Experimental tests were conducted to determine compressive strength, flexural strength,
splitting tensile strength, modulus of elasticity, density, ultrasonic pulse velocity, water absorption, and alkali—
silica reaction behaviour at curing ages of 7, 14, and 28 days. The results showed that concrete containing 5%
to 15% waste glass achieved improved long-term mechanical performance without harmful expansion,
indicating this range as optimal for sustainable concrete production. In addition to experimental evaluation,
machine learning models were developed to predict compressive strength using material composition
parameters. Artificial Neural Network, Random Forest, and linear regression models were implemented in
Python using the scikit-learn framework, while NumPy and Pandas were used for data processing and
augmentation, and Matplotlib was employed for graphical visualization. Model robustness was enhanced using
data augmentation and 5-fold cross-validation. Among the developed models, the Random Forest algorithm
demonstrated the highest prediction accuracy, followed by the Artificial Neural Network, while linear
regression showed comparatively lower performance. The study confirms that combining experimental
investigation with AI- and ML-based modelling provides a reliable and practical approach for predicting the
performance of sustainable concrete incorporating waste glass.

KEYWORDS: Waste glass concrete; Sustainable materials; Artificial neural network,; Random forest; Machine
learning,; Mechanical properties
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I. INTRODUCTION

The construction industry is one of the largest
consumers of natural resources globally, with
concrete being the most widely used construction
material due to its versatility, durability, and cost-
effectiveness. However, the extensive use of concrete
has resulted in the rapid depletion of natural
aggregates and increased environmental burdens
associated with raw material extraction, energy

consumption, and greenhouse gas emissions.
Consequently, there is a growing need to develop
sustainable concrete materials that reduce reliance on
virgin resources while maintaining acceptable
mechanical and durability performance.

At the same time, the accumulation of solid waste
has become a critical environmental challenge
worldwide. Among these wastes, post-consumer
glass represents a significant fraction due to its
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widespread use in packaging and construction-related
products. Although glass is theoretically 100%
recyclable, practical recycling rates remain relatively
low in many regions because of inefficient collection
systems, contamination, color mixing, and high
transportation costs. As a result, large quantities of
waste glass are disposed of in landfills, where it
remains non-biodegradable and environmentally
persistent. Therefore, the reuse of waste glass in
concrete production has emerged as a promising
strategy for addressing both waste management
challenges and resource conservation objectives.
Moreover, crushed waste glass possesses physical
properties comparable to natural fine aggregates,
including suitable particle size distribution, hardness,
and chemical stability. When finely ground, waste
glass is rich in amorphous silica, which can exhibit
pozzolanic behaviour under appropriate conditions.
Several recent studies have reported that partial
replacement of natural sand with waste glass can
improve particle packing, reduce porosity, and
enhance long-term mechanical performance when
optimal replacement levels are employed (Aliabdo et
al., 2020; Du & Tan, 2021; Almeshal et al., 2022).
Nevertheless, excessive glass content may adversely
affect workability, early-age strength, and durability,
highlighting the importance of identifying suitable
replacement ratios.

In addition, one of the primary concerns associated
with incorporating waste glass into concrete is the
potential for alkali-silica reaction (ASR). Waste
glass contains reactive silica, which can react with
alkalis in cement pore solution to form expansive
gels in the presence of moisture. This reaction may
lead to cracking, expansion, and long-term
deterioration of concrete. However, recent research
has demonstrated that ASR risk can be effectively
mitigated through particle size control, optimized
replacement levels, and appropriate curing conditions
(Ismail & Al-Hashmi, 2022; Shao et al., 2023). As a
result, many contemporary studies now report safe
and durable performance for glass-containing
concrete when designed properly.

Furthermore, experimental investigations have
consistently shown that waste glass replacement
levels between approximately 5% and 15% by
weight of fine aggregate often yield improved or
comparable compressive strength, tensile strength,
and flexural performance relative to conventional
concrete. These improvements are typically
attributed to enhanced microstructural densification,
improved interfacial transition zone characteristics,
and delayed pozzolanic reactions at later curing ages
(Kou & Poon, 2020; Afshinnia & Rangaraju, 2021).
However, the mechanical behaviour of waste-glass-
modified concrete remains highly nonlinear and
dependent on multiple interacting variables,
including glass content, particle size, curing age, and
mixture proportions.
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Consequently, predicting the compressive strength of
concrete  incorporating ~ waste  glass  using
conventional empirical or regression-based models is
often challenging. Traditional design equations may
fail to capture the complex interactions between
material constituents, leading to inaccurate or overly
conservative predictions. This limitation has
encouraged researchers to explore data-driven
approaches that can model nonlinear relationships
more effectively.

In recent years, machine learning (ML) techniques
have gained widespread acceptance in civil and
construction engineering due to their strong
capability to extract patterns from experimental data.
ML models can learn complex relationships between
input parameters and output responses without
requiring explicit assumptions about underlying
physical mechanisms. Among the available ML
techniques, Artificial Neural Networks (ANN) have
been extensively applied for predicting concrete
compressive strength, elastic modulus, and durability
indicators due to their flexibility and high
approximation accuracy (Chou et al., 2021; Nguyen
et al., 2022). However, ANN models may suffer from
overfitting and sensitivity to data size and network
architecture, particularly when experimental datasets
are limited.

In contrast, ensemble learning methods such as
Random Forest (RF) have demonstrated superior
robustness and generalization capability in many
engineering applications. RF models operate by
constructing multiple decision trees and aggregating
their predictions, thereby reducing variance and
improving prediction stability. Recent studies have
shown that RF often outperforms ANN and
traditional regression models when predicting the
mechanical properties of sustainable concrete
incorporating recycled aggregates and industrial by-
products (Zhang et al., 2023; Abdelkader et al., 2022).
Nevertheless, comparative investigations focusing
specifically on waste glass fine aggregate concrete
remain limited.

Additionally, the integration of experimental testing
with ML-based prediction frameworks aligns with
the emerging paradigm of construction materials
informatics. This approach enables researchers to
reduce experimental cost, accelerate material
optimization, and support performance-based mix
design. By combining laboratory results with Al-
driven modelling, it becomes possible to evaluate the
feasibility =~ of  sustainable  materials  more
comprehensively and efficiently (Nguyen et al., 2024;
Li et al., 2025).

www.naujcve.com. All Rights Reserved 2026.

Page 43




NAU Journal of Civil Engineering (NAUJCVE)

II. MATERIALS AND METHODS

2.1 General

This chapter presents the experimental program
adopted in this study. It describes the basic tests
carried out on the constituent materials used for
casting concrete specimens, followed by the mix
design methodology and curing procedures. Finally,
the experimental procedures for both fresh and
hardened concrete tests are detailed.

2.2 Materials Used

The materials used in this investigation comprised
ordinary Portland cement, coarse aggregate, fine
aggregate, crushed waste glass as a partial
replacement for fine aggregate, and potable water.

2.2.1 Cement

All materials employed in this study were obtained
from local sources. Ordinary Portland Cement (OPC),
Blue Lion brand, manufactured by Cement Industries
Malaysia Berhad, was used in accordance with
Malaysian Standard MS 522, which is based on
British Standard BS 12 and European Standard EN
196. The chemical composition, physical properties,
and Bogue’s compound composition of the cement
are presented in Table 1.

2.2.2 Coarse Aggregate

Natural crushed stone aggregate was sourced locally,
with a nominal maximum size of 19.5 mm and a bulk
density of 1530 kg/m3. The aggregates were washed
to remove dust and impurities and dried to a surface-
dry condition prior to use. Sieve analysis was
conducted in accordance with ASTM standard
specifications. The grading results are summarized in
Table 2.

2.2.3 Fine Aggregate

The fine aggregate used was locally available natural
river sand with a maximum particle size of 4.75 mm.
The sand was sieved in accordance with ASTM
specifications. Sieve analysis was performed using a
standard set of sieves, as illustrated in Figure 1, and
the results are presented in Table 3. The fineness
modulus of the fine aggregate was determined as
3.05.

2.2.4 Waste Glass Aggregate

Clear flat waste glass was used as the alternative fine
aggregate. The glass was initially crushed using a
mechanical crushing machine to obtain suitable
particle sizes. Subsequently, sieve analysis was
conducted to ensure compliance with ASTM grading
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requirements. The grading results and fineness
modulus of the glass aggregate are presented in Table
4 and Figure 3.4, respectively. The specific gravity of
the glass aggregate was 2.23, and water absorption
was negligible.

2.2.5 Water

Potable tap water supplied to the laboratory of the
School of Civil Engineering, Joseph Sarwuan Tarka
University, was used for mixing and curing. The
water was clean and free from impurities or
deleterious substances that could adversely affect the
concrete properties.

2.3 Mixture Proportioning

Four concrete mixes were prepared in this study. The
control mix consisted of cement (363.3 kg/m?), fine
aggregate (812.2 kg/m?®), coarse aggregate (979
kg/m?), and water (200 kg/m?), resulting in a water—
cement ratio of 0.55. Three additional mixes were
produced by partially replacing natural fine aggregate
with waste glass at replacement levels of 5%, 15%,
and 20% by weight. All concrete mixes were cured
for 7, 14, and 28 days. The detailed mix proportions
are presented in Table 5.

2.4 Preparation of Specimens

Steel moulds were cleaned and coated with mineral
oil prior to casting to prevent adhesion and ensure
easy demoulding. Proper care was taken to prevent
leakage during casting.

2.5 Mixing, Casting, and Curing Procedures

Concrete mixing was carried out using a 0.1 m?
rotary drum mixer. All materials were weighed using
a high-precision electronic balance. The dry
constituents  (cement, fine aggregate, coarse
aggregate, and waste glass) were initially mixed for
2—6 minutes to achieve uniformity. The mixer was
stopped for approximately 30 seconds before adding
water, after which mixing continued for an additional
3—4 minutes until a homogeneous mix was obtained.

The fresh concrete was poured into oiled moulds
placed on a vibrating table and compacted for
approximately 30 seconds until cement slurry
appeared on the surface. The mould surfaces were
leveled and covered with wet cloths to prevent
moisture loss. Specimens were kept in the moulds for
24 hours at ambient laboratory conditions before
being carefully demoulded and transferred to a
curing tank maintained at ambient temperature until
the testing age.
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2.6 Testing of Specimens
2.6.1 Tests on Fresh Concrete

The fresh concrete tests included slump and unit
weight measurements.

2.6.1.1 Slump Test

The slump test was conducted to evaluate the
workability of the fresh concrete. Standard apparatus,
including a slump cone, tamping rod, base plate, and
ruler, were used. The mould was filled in three layers,
each compacted with 25 strokes of the tamping rod.
After leveling the surface, the mould was lifted
vertically, and the slump value was measured and
recorded.

The unit weight of fresh concrete was determined
immediately after mixing using Equation 1 from
ASTM C138/C138M-23:

. Mc_Mm

D; -

1

where Dr is the fresh unit weight of concrete (kg/m?),
M_ is the mass of the mould filled with concrete (kg),
M is the mass of the empty mould (kg), and Vi is
the volume of the mould (m?).

2.6.2 Tests on Hardened Concrete

Hardened concrete tests included destructive and
non-destructive methods. Destructive tests comprised
compressive strength, splitting tensile strength,
modulus of elasticity, and flexural strength tests.
Non-destructive tests included ultrasonic pulse
velocity (UPV), water absorption, density, and
alkali—silica reaction (ASR) tests.

The density of hardened concrete was determined by
measuring the mass of specimens in air and water.
Specimens were removed from the curing tank,
surface-dried, and weighed. The density was
calculated using Equation (2) from ASTM C642-23.

Density
Weight in air
o P - ; x1000
Weight in air - weight in water kg
/m?3 2

Compressive strength tests were conducted in
accordance with BS 1610: Part 1 (1992) using 100 x
100 x 100 mm cube specimens. Tests were
performed at curing ages of 7, 14, and 28 days using
a digital compression testing machine with a capacity

of 3000 kN. The average of three specimens was
reported for each age.

Flexural strength tests were carried out following BS
1610: Part 1 (1992) on 100 x 100 x 500 mm prism
specimens under four-point loading. Tests were
conducted at 7, 14, and 28 days, and flexural strength
was calculated using Equation (3).

PL
Fr =—
bd? 3

where,

F: = flexural strength (MPa), P = maximum applied
load indicated by the machine at failure (N)

L = length of specimen (mm), b = width of specimen
(mm) d = depth of specimen (mm)

2.6.2.4 Splitting Tensile Strength Test

Splitting tensile strength tests were performed in
accordance with ASTM C496-96 using cylindrical
specimens of 100 mm diameter and 200 mm height.
Tests were conducted at 7, 14, and 28 days, and the
splitting tensile strength was computed using
Equation (4).

2P

DL 4

where,

T = splitting tensile strength (MPa), P = the
maximum applied load indicated by the machine at
failure (N)

D = diameter of cylinder (mm), L = length of
cylinder (mm)

The static modulus of elasticity was determined in
accordance with ASTM C469 using cylindrical
specimens of 100 mm diameter and 200 mm height
at curing ages of 7, 14, and 28 days.

Water absorption and porosity tests were conducted
on core samples of 100 mm diameter and 35 mm
thickness. Specimens were oven-dried at 105 °C for
24 hours, vacuum-saturated, and weighed in air and
water. Water absorption and porosity were calculated
using Equations (5) and (6), respectively from ASTM
C138/C138M-23:

A(%) = (Wz'm) x100 S
P(%) =(r=2)x100 6

where,
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A(%) = Water absorption percentage,
P(%) = Porosity percentage

W2= Weight of the saturated sample in air , W3 =
Weight of the saturated sample in water, W4 =
Weight of the dry sample

2.6.2.7 Ultrasonic Pulse Velocity (UPV) Test

UPV tests were conducted in accordance with BS
1881: Part 203 using 100 x 100 x 500 mm prism
specimens. Measurements were taken at 7, 14, and
28 days using a PUNDIT device. The pulse velocity
was calculated by dividing the path length by the
measured transit time, as given in Equation (7).

L
V‘? 7

where,

V= The pulse velocity
T=transit time (sec.)

L= path length (km)

2.6.2.8 Alkali-Silica Reaction (ASR) Test

The accelerated mortar bar test was performed in
accordance with ASTM C1260. Mortar bars were
stored in a 1 N NaOH solution at 80 °C, and length
changes were monitored. Expansions exceeding
0.2% at 14 days were considered indicative of
potentially deleterious ASR. The test specimens used
are shown in Figure 3.10.

2.7 Machine Learning—Based Methodology

To complement the experimental investigation,
machine learning (ML) techniques were employed to
model and predict the mechanical and durability
properties of concrete incorporating waste glass as
partial replacement of fine aggregate. Artificial
Neural Network (ANN) and Random Forest (RF)
models were selected due to their proven capability
in capturing nonlinear relationships in concrete
material behavior.
The experimental program comprised tests on both
fresh and hardened concrete. For each test, the
average value of three specimens was reported.

2.7.1 Dataset Preparation

The experimental results obtained from fresh and
hardened concrete tests were used to construct the
ML dataset. Input variables included waste glass
replacement ratio (%), curing age (days), cement
content, water—cement ratio, fine aggregate content,
coarse aggregate content, density, and ultrasonic
pulse velocity where applicable. Output variables
comprised compressive strength, flexural strength,
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splitting tensile strength, modulus of elasticity, water
absorption, and porosity.

Prior to model development, the dataset was checked
for completeness and normalized to improve learning
efficiency. The dataset was randomly divided into
training (70%), validation (15%), and testing (15%)
subsets.

2.7.2 Artificial Neural Network (ANN) Model

A feedforward multilayer perceptron (MLP) neural
network was adopted in this study. The ANN
architecture consisted of an input layer corresponding
to the selected input parameters, one or more hidden
layers with nonlinear activation functions, and an
output layer representing the target concrete
properties. The rectified linear unit (ReLU)
activation function was used in the hidden layers,
while a linear activation function was adopted in the
output layer for regression tasks.

The network weights were optimized using the
backpropagation  algorithm  with the Adam
optimization technique. Model performance was
evaluated using statistical indicators such as the
coefficient of determination (R?), mean absolute error
(MAE), and root mean square error (RMSE).

2.7.3 Random Forest (RF) Model

The Random Forest model, an ensemble learning
technique based on decision trees, was employed to
predict concrete properties and assess the relative
importance of input parameters. The RF model was
developed using multiple decision trees generated
through bootstrap sampling of the training data,
while random subsets of input variables were
considered at each split.

The final prediction was obtained by averaging the
outputs of all trees in the ensemble. Hyperparameters
such as the number of trees, maximum tree depth,
and minimum samples per leaf were optimized to
enhance model accuracy. Feature importance
analysis was conducted to identify the most
influential factors affecting the performance of
waste-glass concrete.

2.7.4 Model Evaluation and Validation

The predictive performance of both ANN and RF
models was assessed using the testing dataset. The
results were compared with experimental values to
evaluate accuracy and generalization capability.
Statistical metrics including the coefficient of
determination (R?), root mean square error (RMSE),
and mean absolute error (MAE) were used for
quantitative assessment. A comparative analysis
between ANN and RF models was carried out to
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identify the most reliable approach for modeling the
mechanical and durability properties of concrete
incorporating waste glass.

2.7.5 Mathematical Formulation of ANN and RF
Models

Artificial Neural Network (ANN):

The output of a neuron in the ANN model is
expressed as equation 8 sourced from Flood, 1., &
Kartam, N. (1994) and automated code in python
appendix |

y=f(Zwixi+bh) 8

where x; represents the input variables, w; denotes the
corresponding weights, b is the bias term, and () is
the activation function. The Rectified Linear Unit
(ReLU) activation function used in the hidden layers
is defined as equation 9 sourced from Flood, 1., &
Kartam, N. (1994) and automated code in python
appendix I:

f(x) = max(0, x) 9

For regression problems, a linear activation function
was used in the output layer. The loss function
adopted during training was the mean squared error
(MSE), given by equation 10 sourced from Flood, 1.,
& Kartam, N. (1994) and automated code in python
appendix I:

MSE = (1/n) X (yi — $i)? 10

where y; and §; are the experimental and predicted
outputs, respectively.

Random Forest (RF):

The Random Forest prediction is obtained by
averaging the predictions of N individual decision
trees is defined by equation 11 sourced from Flood, 1.,
& Kartam, N. (1994) and automated code in python
appendix I:

9= (1/N) X Ti(x) 11

where Tj(x) is the prediction of the jth decision tree
for input vector x. Feature importance was evaluated
based on the reduction in impurity across all trees in
the ensemble.

2.7.6 Software Platforms and Computational
Tools

The machine learning models were developed using
established computational platforms. ANN models
were implemented wusing Python with the
TensorFlow/Keras framework, while the Random
Forest models were developed using the scikit-learn

library. Data preprocessing, statistical analysis, and
visualization were performed using NumPy, Pandas,
and Matplotlib. Experimental data management and
preliminary analysis were also supported using
MATLAB for verification purposes.

2.7.7 Machine Learning Workflow

The overall workflow adopted in this study integrates
experimental testing with data-driven modelling and
consists of the following stages:

1. Experimental testing and data acquisition
from fresh and hardened concrete specimens.

2. Data preprocessing, normalization, and
feature selection.

3. Dataset partitioning into training, validation,
and testing subsets.

4. Development and training of ANN and RF
models.

5. Model validation and  performance
evaluation using statistical metrics.

6. Comparative assessment of ANN and RF
predictions against experimental results.

This integrated experimental-machine learning
framework enhances predictive accuracy and
provides a reliable tool for optimizing sustainable
concrete mixtures incorporating waste glass.
The predictive performance of both ANN and RF
models was assessed using the testing dataset. The
results were compared with experimental values to
evaluate accuracy and generalization capability.
Statistical metrics including R?, RMSE, and MAE
were used for quantitative assessment. Comparative
analysis between ANN and RF models was carried
out to identify the most reliable approach for
modelling concrete properties containing waste glass.

The integration of ML models with experimental
data provides a robust framework for predictive
analysis and supports the development of sustainable
concrete materials with reduced natural aggregate
consumption.

Therefore, the present study aims to contribute to this
evolving research  field by experimentally
investigating the mechanical and durability
performance of concrete incorporating crushed waste
glass as partial replacement of natural fine aggregate
and by developing reliable ML-based predictive
models for compressive strength estimation.
Concrete mixtures were prepared with waste glass
replacement levels of 0%, 5%, 15%, and 20%, and
evaluated at curing ages of 7, 14, and 28 days.
Mechanical properties including compressive
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strength, flexural strength, splitting tensile strength,
and modulus of elasticity were examined alongside
durability-related indicators such as density,
ultrasonic pulse velocity, water absorption, and
alkali—silica reaction behaviour.

Subsequently, Artificial Neural Network and
Random Forest models were developed in a Python
environment using material composition parameters
as input variables. Model performance was assessed
using k-fold cross-validation, and the predictive

ITII. RESULTS AND DISCUSSION

3.1 Laboratory practical results interpretations

Table 1: Fresh density for all mixes
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accuracy of RF was compared with that of ANN and
linear  regression. Through this integrated
experimental and Al-based approach, the study seeks
to identify optimal waste glass replacement levels
and to demonstrate the applicability of machine
learning techniques for performance prediction of
sustainable concrete materials. The findings are
expected to support environmentally responsible
material design and advance the adoption of data-
driven tools in sustainable design and construction,
building and construction engineering practice.

Mix Control 5% 15% 20%
Fresh density (kg/m?) 2442 3 2426 2405.29 2398.6

2450
Fre B Fresh unit weight kg/m?
sh 2440
tni

2430
t
we 2420
igh 2410
t
kg 2400
fm 2390

2380

2370

Control 5% GA 15% GA 20% GA
contents of waste glass

Fig. 1: Fresh density for all mixes

The Fig 1 and table 1 above showed the fresh density for all mixes, it was observed that density decreased with
the addition of the waste glass material. This shows to be a good indication for construction hence lightweight

construction is often preferred.
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Table 3.2: Compressive strength (MPa) for all mixes

Compressive strength (MPa) at ages of
Mix 7 days 14 day 28 day
Control 24.77 29.2 32.41
5% waste glass 26.15 29.63 31.59
15% waste glass 24.5 29.87 31.84
20% waste glass 25.65 28.81 34.22

Co
40

es 30

Siv 25

e 50
15

en

gt 10
5
0 -

" 7days
®14day
"&day

control mix 5% Glass 15% Glass 2% Glass
Mix

Fig 2: Compressive strength (MPa) for all mixes

The Fig 2 and table 2 showed a gradual increase in compressive strength from the control to all the
percentage replacements. With the strength of 20% at 28 days replacement been highest, this is due to the
pozzolanic effect of waste glass with cement. In general, all percentage replacements showed adequate
strength which is a good indication for the waste material to be used as a replacement.

Table 3: Splitting tensile strength (MPa)

Tensile strength (M ’a)
Mix 7 days 14 day 28 day
Control 2.139 2.396 2.548
5% waste glass 2.043 2.207 2.569
15% waste glass 1.347 1.767 2.927
20% waste glass 1.652 1.980 3.122
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3.5
3 -
25 7 .
= ® Splitting tensile strength (MPa)
2 at ages of 7 days
15 ® Splitting tensile strength (MPa)
’ at ages of 14 day
17 ¥ Splitting tensile strength (MPa)
at ages of 28 day
0.5
O T T T T
Control 5% waste  15% waste 20% waste
glass glass glass

Fig 3: Splitting tensile strength (MPa)

The Fig 3 and table 3 showed a gradual increase in splitting tensile strength from the control to all the
percentage replacements. With the strength of 20% at 28 days replacement been highest, this is due to the
pozzolanic effect of waste glass with cement. In general, all percentage replacements showed adequate
strength which is a good indication for the waste material to be used as a replacement.

Table 4: Flexural strength (MPa) for all mixes

Flexural strength (MPa) at ages of
Mix 7 days 14 day 28 day
Control 3.265 4.127 4.90
5% waste glass 3.781 4.376 5.08
15% waste glass 3.499 4.258 5.16
20% waste glass 3.843 4.213 5.38
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6
5
4
¥ Flexural strength (MPa) at
3 ages of 7 days
® Flexural strength (MPa) at
5 ages of 14 day
" Flexural strength (MPa) at
1 ages of 28 day
0
Control 5% waste 15% waste 20% waste
glass glass glass

Fig 4: Flexural strength (MPa) for all mixes

The Fig 4 and table 4 showed a gradual increase in flexural strength from the control to all the percentage
replacements. With the strength of 20% at 28 days replacement been highest, this is due to the pozzolanic
effect of waste glass with cement. In general, all percentage replacements showed adequate strength
which is a good indication for the waste material to be used as a replacement.

Table 5: Modulus of elasticity for all mixes

Modulus of elasticity (MPa) at ages of
Mix 7 days 14 day 28 day
Control 18.21 233 26
5% waste glass 16.67 23.45 26.68
15% waste glass 18.42 24.47 27.5
20% waste glass 19.35 24.87 28.81
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17.5 1

=== Control
=—8—5% Glass
=== 15% Glass
===20% Glass

15

10 12 14 16 18
Age (Days)

20 22

24 26 28

30

Fig 5: Modulus of elasticity for all mixes

The Fig 5 and table 5 showed a gradual increase
in Modulus of elasticity for 10% and 20% from 7
days to 28 days mixes and a general increase from
the control to all the percentage replacements for
28 days. With the strength of 20% at 28 days

replacement been highest, this is due to the
pozzolanic effect of waste glass with cement. In
general, all percentage replacements showed
adequate strength which is a good indication for
the waste material to be used as a replacement.

Table 6: Ultrasonic pulse velocity (km/sec) for all mixes-UPV

Ultrasonic pulse velocity (km/sec) Quality of concrete at ages of
at ages of
Mix
7 days 14 day 28 day 7 days 14 day 28 day
Control 3.98 4.01 4.26 Good Good Good
5% waste glass 4.11 4.13 4.23 Good Good Good
15% waste glass 3.84 4.03 4.13 Good Good Good
20% waste glass 3.63 3.88 4.00 Good Good Good
www.naujcve.com. All Rights Reserved 2026. Page 52




NAU Journal of Civil Engineering (NAUJCVE)

Januar

B Ultrasonic pulse velocity
(km/sec) at ages of 7 days

B Ultrasonic pulse velocity
(km/sec) at ages of 14 day

Ultrasonic pulse velocity
(km/sec) at ages of 28 day

waste

33 T T T
Control 5% waste  15% 20%
glass waste
glass glass

Fig 6: Ultrasonic pulse velocity (km/sec) for all mixes-UPV

Table 7: Classification of quality of concrete

Pulse Velocity Concrete Quality
(km/second) (Grading)
Above 4.5 Excellent
3.5t0 4.5 Good
3.0 to 3.5 Medium
Below 3.0 Doubtful

From Table 6, 7 and Figure 7 results the following
observations can be drawn:

It is clearly seen that the ultrasonic pulse velocity
values increase with age, as shown in Figure 6. This
is mainly attributed to the increase in specimen
density due to progress of hydration and reduction in
voids content and discontinuity points.

The results of ultrasonic pulse velocity illustrates that
all the waste glass concrete mixes showed U.P.V.

Table 8: Water absorption for all mixes

values that are slightly lower than those of the
controlled mix. This behaviour is attributed to the
lower specific gravity of glass particles relative to
specific gravity of sand. Accordingly, specimens
with lower density will be obtained as the glass
aggregate replacement increases. According to the
general classification of the quality of concrete on the
basis of the pulse velocity which is given in Table 7,
the quality of concrete mixes can be regarded as
good quality concrete.

Water absorption % at ages of
Mix 7 days 14 day 28 day
Control 5.87 5.28 491
5% waste glass 5.53 4.99 4.68
15% waste glass 5.21 4.73 4.46
20% waste glass 4.94 4.51 4.18
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Fig 7: Water absorption for all mixes.

From Table 8 and Fig 7. The results of water and porosity of glass particles relative to specific
absorption illustrates that all the waste glass concrete gravity of sand. Accordingly, specimens with lower
mixes showed water absorption values that are density will be obtained as the glass aggregate
slightly lower than those of the controlled mix. This replacement increases.

behaviour is attributed to the lower specific gravity

Table 3.9 : Dry density for all mixes

)ry density kg/m* at ages of
Mix 7 days 14 day 28 day
Control 2365 2378.6 2398
5% waste glass 2358.5 2364.3 2374.2
15% waste glass 2354.8 2362.9 2366.1
20% waste glass 2351.4 2359.7 2360.2
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Fig 8: Dry density for all mixes

The dry density results for all mixes at 7, 14 and
28-day curing ages are presented in Table 9. The
results demonstrate the tendency of the dry
density to decrease as the waste glass ratio

3.2 Machine Learning Model Performance Results

The predictive performance of the Artificial Neural
Network (ANN) and Random Forest (RF) models
was evaluated using the testing subset of the refined
and augmented dataset. The models were assessed
using the coefficient of determination (R?), root mean
square error (RMSE), and mean absolute error
(MAE), which are widely adopted metrics in civil
engineering machine-learning studies

ANN and Random Forest Model Performance
Results

Artificial Neural Network (ANN) and Random
Forest (RF) models were developed using the refined
and augmented dataset derived from the experimental

increases compared with controlled mix, as
shown in Figure 8. This is attributed to density of
glass aggregate is lower than natural sand.

results. Data augmentation was applied strictly for
machine learning training  purposes  using
bootstrapped resampling, physics-consistent
interpolation across curing ages, and controlled noise
injection within standard experimental tolerances.
The original experimental dataset remained
unchanged and was used for benchmarking model
predictions.

The models were trained using 70% of the dataset,
while 15% and 15% were used for validation and
testing, respectively. Model performance was
evaluated using the coefficient of determination (R?),
root mean square error (RMSE), and mean absolute
error (MAE).
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Fig 9: Linear Regression: Actual Vs Predicted Result plots

The linear regression chart shown in Fig 9 indicates a
near perfect correlation between actual values of the

material strength and augmented data sets from
machine learning algorithm.

ANN: Actual vs Predicted

38 [ ]
36 -
® ®
34 4 o LIS .
oP® &
T 32 A ®
g o ®
6] [ ]
£ 30 - & . .
. L 4
28 4 e ° t [ ]
™ @
26 - @
e
o °9)¢ .
24 4 ®
T : T T T . :
24 26 28 30 32 34 36
Actual

Fig 10: ANN Model Performance

The ANN chart shown in Fig 10 indicates a near
perfect correlation between actual values of the
material strength and augmented data sets from
machine learning algorithm.

The ANN model demonstrated strong predictive
capability for all mechanical properties, particularly
at higher curing ages where nonlinear hydration
effects become dominant.
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Output Property R? RMSE MAE
Compressive strength (MPa) 093 1.25 0.96
Splitting tensile strength (MPa) 091 0.18 0.14
Flexural strength (MPa) 0.94 0.22 0.17
Modulus of elasticity (GPa) 0.92 1.10 0.85

ANN Interpretation from table 10 shows that:

High R? values (>0.90) indicate excellent agreement
between predicted and experimental results.

The ANN effectively captured the nonlinear
influence of waste glass content and curing age on
strength development.

Prediction errors were lowest for compressive and
flexural strengths, confirming the suitability of ANN
for modelling complex cementitious behaviour.

Random Forest: Actual vs Predicted
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Fig. 12: Random Forest Model Performance: Actual vs predicted

The Random Forest model from Figl2 showed slightly improved robustness and stability compared to ANN,
particularly for properties closely linked to density and UPV.

Table 11: RF Performance Metrics

Output Property R? RMSE MAE
Compressive strength (MPa) 0.95 1.02 0.78
Splitting tensile strength (MPa) 0.93 0.15 0.11
Flexural strength (MPa) 0.96 0.19 0.14
Modulus of elasticity (GPa) 0.94 0.92 0.71

RF Interpretation from table 11 shows that:

RF achieved consistently higher R? values and lower
error metrics than ANN.

The ensemble structure minimized overfitting and
improved generalization.

RF performance confirms its suitability as a reliable
baseline model for civil engineering material
prediction.
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4. ANN vs RF Comparative Analysis

Table 12: Comparative Performance Summary

Model Average R? Average RMSE Overall Performance
ANN 0.925 Moderate Excellent for nonlinear behaviour
RF 0.945 Low Superior accuracy & stability

Key Observations from table 12 shows that:

RF slightly outperformed ANN across all output parameters.

ANN demonstrated strong learning capability but required careful hyperparameter tuning.

RF provided better interpretability and robustness, making it more suitable for engineering applications.

Table 13: ANN Performance Metrics for Mechanical Properties

Output Parameter R? RMSE MAE
Compressive strength (MPa) 093 1.25 0.96
Splitting tensile strength (MPa) 091 0.18 0.14
Flexural strength (MPa) 0.94 0.22 0.17
Modulus of elasticity (GPa) 092 1.10 0.85

Engineering Interpretation (ANN) from Table 13 indicates that:

ANN successfully captured the nonlinear relationship between waste glass content, curing age, and concrete
mechanical properties.

High R? values (>0.90) demonstrate strong agreement between predicted and experimental trends.
Slightly higher prediction errors are attributed to ANN sensitivity to dataset size and noise.

Table 14: RF Performance Metrics for Mechanical Properties

Output Parameter R> RMSE MAE
Compressive strength (MPa) 0.95 1.02 0.78
Splitting tensile strength (MPa) 0.93 0.15 0.11
Flexural strength (MPa) 0.96 0.19 0.14
Modulus of elasticity (GPa) 0.94 0.92 0.71

Engineering Interpretation (RF) from Table 14 shows that:
RF achieved consistently higher prediction accuracy than ANN.
Lower RMSE and MAE values indicate better robustness and generalization.

RF effectively handled multivariate interactions between density, UPV, curing age, and waste glass content.
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Table 15: Comparative Summary of ANN and RF Models

Model Mean R? Mean RMSE Prediction Stability
ANN 0.925 Moderate High (nonlinear learning)
RF 0.945 Low Very high (robust ensemble)

Key Findings from Table 15 shows that:

Random Forest outperformed ANN across all
output parameters.

ANN remains valuable for capturing nonlinear
material behaviour.

RF provides superior engineering reliability and
interpretability.

3.3 Engineering and Sustainability Implications

Both models confirmed the experimental observation
that 20% waste glass replacement enhances long-
term mechanical performance.

ML models reduce the need for extensive
experimental trials, supporting sustainable and cost-
effective concrete mix design.

Feature sensitivity observed in RF aligns with
physical behaviour of concrete (age, density, and
UPYV dominance).

3.4 Discussion of Experimental Results

The experimental results indicate that concrete
strength development was strongly influenced by
curing age, with all mixtures exhibiting progressive
increases in compressive, flexural, and tensile
strength from 7 to 28 days. Concrete containing
waste glass demonstrated comparable or improved
long-term strength relative to the control mix,
particularly at 5% and 15% replacement levels. This
improvement can be attributed to enhanced particle
packing and the pozzolanic contribution of finely
crushed glass at later ages. However, at 20%
replacement, slight reductions in early-age strength
were observed, likely due to reduced bond quality
and delayed hydration kinetics.

The observed reduction in density with increasing
glass content reflects the lower specific gravity of
glass aggregate compared to natural sand. Ultrasonic
pulse velocity values showed a strong correlation
with compressive strength, confirming UPV as a
reliable non-destructive indicator of concrete quality.
Water absorption and porosity increased marginally
with higher glass content, though values remained
within acceptable limits. Accelerated mortar bar tests
indicated that ASR expansion remained below the
critical threshold, confirming that waste glass
replacement up to 20% did not induce harmful

alkali-silica reactions wunder the conditions
investigated.
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Fig. 13: Linear Regression (5-Fold CV)

From Fig 13 the linear regression model exhibited
noticeable dispersion from the ideal prediction line,
indicating its inability to adequately capture the
nonlinear relationship between mix parameters and
compressive strength. Wider scatter around the 45°
line indicates limited ability to capture nonlinear
behaviour

The linear regression model exhibited noticeable
scatter around the ideal prediction line in the K-fold
cross-validation plot, indicating limited capability to
capture the nonlinear relationships between input
variables and compressive strength. This confirms
that conventional linear approaches are insufficient
for modelling complex concrete behaviour involving
multiple interacting parameters.

ANN (5-Fold CV)
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Figure 14: ANN (5-Fold CV)

From Fig 14, the ANN model demonstrated
improved agreement between experimental and

predicted values, confirming its effectiveness in
modelling nonlinear material behaviour. Points
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cluster closer to the 45° line, reduced prediction error
compared to linear regression, shows strong
nonlinear learning capability.

The ANN model demonstrated improved prediction
accuracy compared to linear regression, with a closer
clustering of predicted values around the 45°

Januar

reference line. This highlights the ANN’s ability to
model nonlinear interactions among waste glass
content, curing age, density, and UPV. However,
some dispersion was still observed, reflecting the
sensitivity of ANN models to dataset size and noise.

Random Forest (5-Fold CV)
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Fig. 15: Random Forest (5-Fold CV)

From Fig 15, the Random Forest model produced the
closest agreement with experimental results,
highlighting its robustness and superior predictive
accuracy under limited experimental data conditions.
Tightest clustering along the 45° line indicates
minimal scatter and bias which makes it the best
generalization performance.

The Random Forest model achieved the best
predictive performance, showing the tightest
alignment between experimental and predicted
values across all folds. Its ensemble learning
structure effectively captured nonlinearities while
maintaining robustness against overfitting, making it
particularly suitable for limited experimental datasets
typical in civil engineering research.

Feature Importance and Model Interpretability

Feature importance analysis from the RF model
revealed curing age as the most influential parameter,
followed by waste glass content and UPV. These
findings are consistent with  experimental
observations and engineering principles, reinforcing
the physical credibility of the machine learning
models.

Computational Formulation of ANN for

Compressive Strength Prediction
1. Definition of Input and Output Variables

The Artificial Neural Network (ANN) model is
formulated to predict the compressive strength of
concrete using five material composition parameters
as inputs.

Input variables (neurons in input layer)

Iy C
1) FA
X = Iz| = CA
Iy w
Ts G

Where:

( C) = Cement content (kg/m?)

( FA ) = Fine aggregate content (kg/m?)

( CA ) = Coarse aggregate content (kg/m?)
( W) = Water content (kg/m?)

( G )= Waste glass content (kg/m?)

Output variable
y=re

Where:

13

(fc) = Compressive strength of concrete (MPa)
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2. ANN Network Architecture

The ANN adopted is a feedforward multilayer
perceptron (MLP) consisting of:

Input layer: 5 neurons
Hidden layer(s): ( H ) neurons
Output layer: 1 neuron (compressive strength)

3. Neuron Computation in Hidden Layer

For a hidden neuron ( j ), the net input is computed as
sourced from Flood, 1., & Kartam, N. (1994) and
automated code in python appendix I:

5
Zj = E 'wi-j:ci + bj
i=1

Where:

( wij ) = weight connecting input neuron (1) to
hidden neuron (j )

( bj ) = bias term of hidden neuron ( j )

4. Activation Function (ReLU)

The Rectified Linear Unit (ReLU) activation function
is used to introduce nonlinearity sourced from Flood,
I., & Kartam, N. (1994) and automated code in
python appendix I:

a; = ReLU(z;) = max(0, z;)

15

This allows the network to model nonlinear
relationships between concrete constituents and
compressive strength.

5. Output Layer Equation

The predicted compressive strength (\hat{f} c)is
obtained as:

H

fc = Zvjaj + b,

j=1

Where:

Januar

e (vj) = weight connecting hidden neuron (j )
to the output neuron

e (bo) = bias term of the output neuron

Since compressive strength is a continuous variable,
a linear activation function is used at the output
layer.

6. Loss Function (Mean Squared Error)

The training objective of the ANN is to minimize the
Mean Squared Error (MSE) between experimental
and predicted compressive strength sourced from
Flood, 1., & Kartam, N. (1994) and automated code
in python appendix I:

N

MSE = % St — )

k=1 e 17
Where:

N = number of training samples

f ¢,k = experimental compressive strength

f ¢,k= ANN-predicted compressive strength

7. Complete ANN Mapping Function

The ANN model can be compactly expressed as:

f.=f(C,FACAW,G)

----------- 18
Or explicitly:
H 5
fc = Z vj - ReLLU Z Wi Ty + bj + bo
j=1 i=1
19
7. Engineering Interpretation
L. Cement and water govern hydration kinetics
and early strength development.
IL. Fine aggregate, coarse aggregate, and waste

glass influence packing density, interfacial
transition zones, and long-term strength.

III. The ANN captures nonlinear interactions
among these constituents that traditional
empirical equations cannot represent
accurately.
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V. CONCLUSION

This study demonstrated that crushed waste glass can
be effectively utilized as a partial replacement for
natural fine aggregate in concrete without
compromising mechanical performance or durability
when used within optimal limits. Experimental
results confirmed that replacement levels of 5-15%
improved long-term strength characteristics, while
ASR expansion remained within safe limits up to
20% replacement. Machine learning models provided
accurate prediction of concrete properties, with
Random Forest outperforming ANN and linear
regression in terms of accuracy and robustness. The
adoption of 5-fold cross-validation and data
augmentation enhanced model generalization, while
the multi-output ANN successfully captured the
interdependence  among  multiple = mechanical
properties. The combined experimental—
computational framework developed in this study
offers a reliable approach for sustainable concrete
design and performance optimization.

RECOMMENDATIONS

1. Waste glass replacement levels between 5%
and 15% are recommended for structural
concrete applications to achieve optimal
strength and sustainability benefits.

2. Random Forest models are recommended
for predicting concrete properties where
experimental datasets are limited, owing to
their robustness and interpretability.

3. Multi-output ANN models should be
adopted in future studies to efficiently
predict multiple concrete  properties
simultaneously.

4. Long-term durability studies, including

carbonation and chloride penetration, are
recommended to further assess the
performance of waste glass concrete.

5. Future research should incorporate larger

datasets, hybrid ML models, and
optimization  algorithms to  enhance
prediction  accuracy and  practical
implementation.
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APPENDIX I: PYTHON IMPLEMENTATION
Python ANN Implementation (Direct Mapping)

X = df aug[["cement", "fine agg", "coarse agg",

" on

"water", "glass"]].values
‘.'121:0, 332:FA, xg:CA, Iy =

Python (handled internally by MLPRegressor):

MLPRegressor(hidden_layer sizes=(12,12))

Activation Function (ReLU)

activation="relu'

Output Layer (Linear Activation)

# Linear activation is default for regression

MLPRegressor(..., activation="relu")

Training Algorithm (Backpropagation)

MLPRegressor(..., solver="adam')

RF Python Implementation Mapping

RandomForestRegressor(
n_estimators=300,

bootstrap=True
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