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ABSTRACT: The analysis of a circular cylindrical shell under internal hydrostatic pressure and ring force is 
carried out in this paper. The governing fourth order differential equation, similar to that of a beam on elastic 
foundation was adopted from the bending theory of shells. Laplace transform was successfully used to solve the 
differential equation for the displacements and stresses. The results accurately agreed with those obtained using the 
classical and initial value methods as well as the method proposed by the Indian Standard IS 3370. The Laplace 
transform, less tedious and more time saving than its counterparts, proved to be well conditioned for handling the 
local line force induced by the ring. The introduction of the ring reduced considerably the displacements and 
stresses in the cylinder. Specifically reduction of 43.75%, 38.85%, 25.10%, 1.65% and 43.75% on the maximum 
deflection, rotation, bending moment, shear force, and hoop tension respectively was achieved as a result of the 
introduction of the ring. The optimum location of the ring along the height of the cylindrical shell was also 
established to be 0.69 times height, measured from the top of cylinder. 
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I. INTRODUCTION  
Shells are curved plate structures having a thickness which is very small compared to the other dimensions. 

Their geometric properties (single or double curvature) make them more efficient than plates in load carrying 
mechanism Pawel (2005). Single curvature shell structures are commonly used as storage tanks and silos, pressure 
vessels, submarines, airplanes, chimneys, oil rigs or even lighting columns (Pawel (2005); [Pawel, W. (2005); 
Lemák, D. and Studnička, J.(2005); Teng, J.G., Zhao, Y. and Lam, L. (2001);Ross, C.T.F., Little, A.P.F. and 
Adeniyi, K.A. (2005);Wu, T.Y. and Liu, G.R. (2000);Winterstetter, Th.A. and Schmidt, H. (2002); Little, A.P.F., 
Ross, C.T.F., Short, D. and  Brown, G.X. (2008)]. 

Double curvature shells find their use in the construction of spherical tanks and reservoirs, roofs, stadiums, 
vehicles and water towers. Shell structures differ in their shape (cylindrical, spherical, parabolic etc…), in the way 
they are stiffened (laterally, longitudinally or orthogonally stiffened), by the type of load action, by the types of 
material used (concrete, steel) etc… This great variability and range of shell performance present many difficulties 
in their design (Lemák, D. and Studnička, J.; 2005). 

The objective of this study is to carry out the static analysis of a laterally ring-stiffened circular cylindrical 
shell in the presence of internal hydrostatic pressure using Laplace transform and to compare the results to those 
obtained by means of the classical and initial value methods.  

Shells support loads through two ways, namely the membrane and bending behaviours. Two distinct shell 
theories therefore exist: the membrane and the moment theories. A membrane theory is performed under the 
assumption that a curved surface is incapable of conveying the shear forces and bending moments (Ugural, A.C.; 
1999) ). A bending theory includes the effects of bending in the analysis. Although, for practical purposes, the 
membrane stresses are of greater importance than the bending stresses, a bending theory that accounts for the 
discontinuity effects in geometry (changes in thickness) or boundary conditions (concentrated loading, ring effect) 
is needed. Indeed these effects cannot be captured by means of the membrane theory alone.  

Rings are generally used to stiffen cylindrical shells. They are conventionally used laterally, longitudinally 
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or in both directions. The ring stiffeners prevent elastic buckling from occurring before yielding of the material, 
further increasing the structural efficiency (Ross, C.T.F.; 1990).  

The rigorous shell theories developed in the whole 20th century (Wu, T.Y., Wang, Y.Y. and Liu, G.R.; 
2003) often led to sets of differential equations which, in most cases, are solved by means of numerical methods 
such as finite element, finite difference, differential quadrature methods etc… Even though the tremendous 
development in the computing technology has permitted very high level of accuracy in these numerical methods, 
the analytical methods still have their merit in the sense that they provide an insight into the shell problems and an 
understanding of the shell physical behaviour. They also equip the designer with a basis for evaluating the results of 
approximate solutions through quantitative comparison. The analytical methods include the classical method, the 
initial value approach and the Laplace transform, to mention but few. In this study we investigate the use of Laplace 
transform. The method is widely used in engineering for the solution of differential equations. Its applications 
include the solution of the differential equation that describes the variation of the charge in a capacitor, the equation 
of variation of concentration of solids in sewage sludge etc. (Agunwamba, J.C., 2007). 

 
II. THEORY/CALCULATION/METHODOLOGY  

A. DIFFERENTIAL EQUATION OF EQUILIBRIUM  
The equations of equilibrium of a cylindrical shell according to the bending theory are given as: 

(Timoshenko, S. and Woinowsky-Krieger, S.; 1959) 
 

 

 

 

where x, y and z, axes at a given point O of the middle surface, are taken in the directions of the axis of the cylinder, 
the tangent to the circumference, and the normal to the middle surface of the shell respectively; X, Y and Z are the 
components of the transverse load in x, y and z directions respectively; u, v and w are the displacement components 
in x, y and z directions respectively; h and R are the thickness and radius of the shell respectively; E and µ are the 
Young modulus (modulus of elasticity) and the Poisson’s ratio of the material respectively. On the assumption that 
(i) the middle surface of the shell is inextensible in y direction such that v = 0, and (ii) the normal force Nx acting on 
the transverse section of the shell is neglected, and on the fact that (iii) the forces generated by the hydrostatic and 
ring force on the vertical cylindrical shell do not depend on y but only on x, the following relationships are 
obtained: 
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where:     

 ;  ; 

Nφ is the hoop tension; S is the membrane shearing force; Mx is the longitudinal bending moment; and Mφ is the 
transverse bending moment. 

Making use of the above conditions (i) and (iii), and noticing that the X and Y components of the loading 
(Fig. 1) vanish, Equation (3) further becomes: 

 

 

where  . 

 
 
 
 
 
 
 

 

      

 

 

 

 

 

Fig. 1. Section of vertical cylindrical shell under internal hydrostatic pressure and ring force 
 

Equation (9) is only applicable to cylindrical shells subjected to axisymmetric loading, i.e. cases where 
stresses and displacements are constant along the circumferential section. The Z component of the loading can be 
expressed as: [13] 

 
where q is the internal hydrostatic pressure; P is the ring-induced force applied at the ring location (at distance, a 
from top of cylinder); γ is specific weight of the contained water; δ(x - a) is known as the Dirac delta function and is 
defined as follows: 

 

Equation (9) can thus be written as: 
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B. SOLUTION  

Equation (10) will be solved by means of Laplace transform. 
 

 Representation of the Differential Equation in Terms of “s” Parameter: 
  
Laplace transform is next applied to the various terms of Equation (10): 
 

  

 

 
 

 
 

 
 
where  is the Laplace transformation of a function f of x, which is equal to ; w’, w’’ and w’’’ are the 
1st, 2nd and 3rd derivatives of w with respect to x respectively.  

Consequently the Laplace transform of Equation (10) can be written as: 

 
 
where , , , and   
 

Making  subject of the formula in Equation (15), we obtain: 

 
 

Equation (16) is known as subsidiary equation whose inverse transform yields the solution w(x). Let 
Equation (16) be written as: 

 

 
 

where  ;    and  . 

 
It follows that: 

 
 
where  ,  and  are the inverse transforms of ,  and  respectively. 
 

 Inverse Transform of  by Means of Greenwich contour: 
The Laplace transformation of  can be defined by means of Greenwich contour or complex integral 

as [11]: 
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where C is the Greenwich contour region and  is the close integral. 

By the residue theorem,  equals the sum of the residues at the poles of  within the contour. A 
residue is obtained by the evaluation of the expression: 

                                                                                                (19) 

 
where k is the order of pole;  is the function i.e.  and  is the pole or point of discontinuity. Here 

the poles are  ;  ;  and . Let , ,  and  be the residues at the respective 

poles of . 

 
 

 
 

 
 

 
 
where  and . 
 

Thus: 

 
 

Substitution of Equations (20 - 23) into Equation (24) gives: 
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Owing to  and , eqn (25) can further be written as: 

 
 

where ; ; ;  ; 

; ;  ; and  
. 

 
 Laplace Inverse Transform of  Using Partial Fractions 

 can be expressed in terms of its partial fraction as: 

 
 
which, further, gives: 

 
 

Taking the inverse transform of Equation (27), we obtain: 

 

 

 
 

 Laplace Inverse Transform of  Using Partial Fractions 
, in terms of its partial fractions, is found to be: 

 

 
 

Taking the inverse transform of Equation (29), we obtain: 
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where H(x – a) is the Heaviside unit step function defined as (A. Jeffrey, A.; 2002): 

 
 

Making use of Equations (26, 28, 30) in Equation (17) and recalling that    and 

, we obtain: 

 
 

Equation (31) represents the expression for the radial deflection. Other displacement and stress 
components can be found using the following relationships: 
 Longitudinal rotation, ; 

 Longitudinal bending moment, ; 

 Longitudinal shear force, ; 

 Hoop tension, . 

It follows that: 
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It should be noted that A1, A2, A3, and A4 are found using the boundary conditions. 
 

C. NUMERICAL APPLICATIONS  
It is assumed that the top of the cylinder is supported by an elastic ring that has a negligible rigidity against 

out of plane rotation, while the bottom end is rigidly fixed to the ground. The coordinate system is chosen such that 
the origin is at the top of the cylinder (see Fig. 1). It follows that:  

 

where L is the height of the cylinder. 

Let the tank be made of reinforced concrete and the following values be adopted for the various 
parameters: 

 
R = 10 m; L = 8 m; h = 0.2 m, γ = 9.81 KN/m3; E = 25 x 106 KN/m2 and µ = 0.20 

Table 1 summarises the stresses and displacements along the height of the tank when only hydrostatic 
pressure is acting on it. The results are computed from Equations (31 - 35), subject to P = 0 and the boundary 
conditions enumerated in Equation (36).  
 
Table 1. Forces and displacements in the cylindrical shell under internal hydrostatic pressure by Laplace 
transform. 

X 
 (m) 

Deflection 
 (m) 

Rotation 
 (rad) 

Bending Moment 
(KNm/m) 

Shear Force 
(KN/m) 

Hoop 
Tension 
(KN) 

0 0  0.000193078 0 -0.0402051 0 
0.80 0.000154684 0.00019397 -0.0451496 -0.0880179 77.3422 
1.60 0.000311251 0.000198315 -0.158447 -0.19831 155.626 
2.40 0.000473902 0.000209739 -0.341304 -0.221658 236.951 
3.20 0.000648797 0.000227977 -0.394245 0.208596 324.398 
4.00 0.000836118 0.000235429 0.259955 1.6319 418.059 
4.80 0.00100885 0.000179067 2.52543 4.14613 504.424 
5.33 0.00107679 0.0000639652 5.14438 5.58066 538.396 
5.52496 0.00108323 0 6.2528 5.73837 541.615 
5.60 0.00108219 -0.0000279551 6.68257 5.70659 541.097 
6.40 0.000911624 -0.000422636 9.65614 -0.443004 455.812 
7.20 0.000420055 -0.000740247 0.707415 -26.2869 210.028 
7.22626 0.00040061 -0.000740787 -3.41061 x 10-13 -27.6061 200.305 
8.00 1.38778 x 10-17 0 -39.9695 -79.4167 0 

 
 The Ring Problem 

Rings are introduced in order to reduce displacements in cylindrical shells. Their introduction will affect 
the entire stress and displacement distribution in the cylinder. If a single ring should be used, then its ideal location 
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would be the point of maximum deflection due internal hydrostatic pressure. It is assumed here that the width of the 
ring is negligible compared to the height L of the cylinder, such that the ring action can be idealised as a line 
(circumferential) force in opposite direction to the hydrostatic pressure. The ring location is found by solving the 
eqn (37) for a: 

 

 
where  is equal to  subject to P = 0. 
 

A numerical solution of Equation (37) by Newton Raphson method (for example) gives the location of the 
ring at a = 5.52496 m (measured from the top of the cylinder). 

The ring force P is next found by assuming that the ring would induce, at its location, a deflection equal to 
 but in opposite direction. This is done by solving for P the following equation: 

   

where  is understood to be equal to  subject to γ = 0. 
 
The solution of Equation (38) yields P = 119.038 KN/m. 
 

The displacements and stresses along the height of shell are given in Table 2. It is worth noting that all 
computations in this paper were carried out using MATHEMATICA® 5.2 software. 
 
Table 2: Forces and displacements in the cylindrical shell under internal hydrostatic pressure and ring force 
by Laplace transform.  

X 
 (m) 

Deflection 
 (m) 

Rotation  
(rad) 

Bending 
Moment 
(KNm/m) 

Shear Force 
(KN/m) 

Hoop Tension 
(KN) 

0 0 0.000193078 0 -0.0402051 0 
0.80 0.000174391 0.000220892 -0.153407 0.0339628 87.1955 
1.60 0.000352706 0.000221777 0.264219 1.15411 176.353 
2.40 0.000517503 0.000177744 1.89298 2.97668 258.752 
3.20 0.000608166 0.0000261505 4.82283 3.91817 304.083 
3.29082 0.000609367 -4.33681 x 10-19 5.17351 3.792 304.683 
4.00 0.000523554 -0.000252704 6.6514 -0.948996 261.777 
4.77416 0.000231914 -0.000452965 1.42109 x 10-14 -19.1194 115.957 
4.80 0.000220213 -0.000452592 -0.505908 -20.0408 110.106 
5.33 0.0000205465 -0.00021746 -16.9712 -43.453 10.2732 
5.52496 -8.67362 x 10-19 0.000024404 -26.4394 65.2662 -4.54747 x 10-13 

5.60 5.85806 x 10-6 0.000128316 -21.6951 61.1801 2.92903 
6.40 0.000261007 0.000265765 10.1159 19.1319 130.504 
7.20 0.000242178 -0.000306588 9.20791 -22.5769 121.089 
8.00 3.81639 x 10-17 2.77556 x 10-17 -29.9367 -78.1045 1.54614 x 10-11 

 
III. DISCUSSION OF RESULTS 

The results obtained from the Laplace transform solutions in Tables 1 and 2 are found to agree accurately 
with those computed from the classical and initial value solutions (Osadebe, N.N. and Adamou, A. (2010)  shown in 
Tables 3, 4 and 5. 
 
Table 3. Forces and displacements in the cylindrical shell under internal hydrostatic pressure by the classical 
method. 

X 
 (m) 

Deflection (m) Rotation 
 (rad) 

Bending Moment 
(KNm/m) 

Shear Force 
(KN/m) 

Hoop Tension 
(KN) 

0 0 0.000193078 0 -0.0402051 0 
0.80 0.000154684 0.00019397 -0.0451496 -0.0880179 77.3422 
1.60 0.000311251 0.000198315 -0.158447 -0.19831 155.626 
2.40 0.000473902 0.000209739 -0.341304 -0.221658 236.951 
3.20 0.000648797 0.000227977 -0.394245 0.208596 324.398 
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4.00 0.000836118 0.000235429 0.259955 1.6319 418.059 
4.80 0.00100885 0.000179067 2.52543 4.14613 504.424 
5.33 0.00107679 0.0000639652 5.14438 5.58066 538.396 
5.52496 0.00108323 1.97867 x 10-18 6.2528 5.73837 541.615 
5.60 0.00108219 -0.0000279551 6.68257 5.70659 541.097 
6.40 0.000911624 -0.000422636 9.65614 -0.443004 455.812 
7.20 0.000420055 -0.000740247 0.707415 -26.2869 210.028 
8.00 2.1684 x 10-19 2.71051 x 10-20 -39.9695 -79.4167 1.13687 x 10-13 

 
Table 4. Forces and displacements in the cylindrical shell under internal hydrostatic pressure by initial value 
method. 

X 
 (m) 

Deflection 
 (m) 

Rotation 
 (rad) 

Bending Moment 
(KNm/m) 

Shear Force 
(KN/m) 

Hoop Tension 
(KN) 

0 0 0.000193078 0 -0.0402051 0 
0.80 0.000154684 0.00019397 -0.0451496 -0.0880179 77.3422 
1.60 0.000311251 0.000198315 -0.158447 -0.19831 155.626 
2.40 0.000473902 0.000209739 -0.341304 -0.221658 236.951 
3.20 0.000648797 0.000227977 -0.394245 0.208596 324.398 
4.00 0.000836118 0.000235429 0.259955 1.6319 418.059 
4.80 0.00100885 0.000179067 2.52543 4.14613 504.424 
5.33 0.00107679 0.0000639652 5.14438 5.58066 538.396 
5.52496 0.00108323 0 6.2528 5.73837 541.615 
5.60 0.00108219 -0.0000279551 6.68257 5.70659 541.097 
6.40 0.000911624 -0.000422636 9.65614 -0.443004 455.812 
7.20 0.000420055 -0.000740247 0.707415 -26.2869 210.028 
7.22626 0.00040061 -0.000740787 -2.27374  x 10-13 -27.6061 200.305 
8.00 1.38778 x 10-17 0 -39.9695 -79.4167 7.27596 x 10-12 

 
Table 5. Forces and displacements in the cylindrical shell under internal hydrostatic pressure and ring force 
by initial value method. 

X 
 (m) 

Deflection 
 (m) 

Rotation  
(rad) 

Bending Moment 
(KNm/m) 

Shear Force 
(KN/m) 

Hoop Tension 
(KN) 

0 0 0.000193078 0 -0.0402051 0 
0.80 0.000174391 0.000220892 -0.153407 0.0339628 87.1955 
1.60 0.000352706 0.000221777 0.264219 1.15411 176.353 
2.40 0.000517503 0.000177744 1.89298 2.97668 258.752 
3.20 0.000608166 0.0000261505 4.82283 3.91817 304.083 
3.29082 0.000609367 2.1684 x 10-18 5.17351 3.792 304.683 
4.00 0.000523554 -0.000252704 6.6514 -0.948996 261.777 
4.77416 0.000231914 -0.000452965 1.84741 x 10-14 -19.1194 115.957 
4.80 0.000220213 -0.000452592 -0.505908 -20.0408 110.106 
5.33 0.0000205465 -0.00021746 -16.9712 -43.453 10.2732 
5.52496 -8.67362 x 10-19 0.000024404 -26.4394 65.2662 0 

5.60 5.85806 x 10-6 0.000128316 -21.6951 61.1801 2.92903 
6.40 0.000261007 0.000265765 10.1159 19.1319 130.504 
7.20 0.000242178 -0.000306588 9.20791 -22.5769 121.089 
8.00 -3.46945x 10-18 -1.73472 x 10-18 -29.9367 -78.1045 1.36424 x 10-11 

 
The introduction of the ring modified positively the distribution of forces and displacements along the 

height of the cylindrical shell. As a matter of fact, a comparison of forces and displacements in Tables 1 and 2 
shows a reduction of 43.75%, 38.85%, 25.10%, 1.65% and 43.75% on the maximum deflection, rotation, bending 
moment, shear force and hoop tension respectively as a result of the introduction of the ring. Percentages are 
computed here based on the absolute values of the forces and displacements. 

The optimum location of the single ring stiffener is found to be at 0.69 L, measured from the top of 
cylinder. 

The case of a cylindrical shell fixed at the bottom end and free at the top end under internal hydrostatic 
pressure was also looked into maintaining the same parameters. The values of the bending moment and hoop 
tension along the height of shell using the present method were compared to those obtained by means of the 
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approach of the Indian Standard IS 3370 [16]. Table 6 shows that the differences do not exceed 0.8 KNm/m for the 
bending moment, and 2.1 KN for the hoop tension, and thus are not excessive for engineering purposes. 
 
Table 6. Comparison of results obtained using the present method and the IS 3370 method for cylindrical 
shell fixed to the ground and free at the top under internal hydrostatic pressure.  

X (m) 
 

Bending Moment (KNm/m) Hoop Tension (KN) 
Present Method  IS 3370 Method  Difference  Present 

Method 
IS 3370 
Method 

 Difference 

0.0 0 0 0 -0.740702 0.000 0.740702 
0.8 -0.0311123 0.0000 0.0311123 77.0796 77.6952 0.6156 
1.6 -0.148497 0.0000 0.148497 155.609 156.175 0.566 
2.4 -0.337466 -0.502272 -0.164786 236.999 238.579 1.58 
3.2 -0.393804 -1.00454 -0.610736 324.436 323.338 -1.098 
4.0 0.259388 -0.502272 -0.76166 418.075 416.729 -1.346 
4.8 2.52492 2.00909 -0.51583 504.426 503.057 -1.369 
5.6 6.68234 6.52954 -0.1528 541.095 539.158 -1.937 
6.4 9.65609 9.54317 -0.11292 455.81 456.754 0.944 
7.2 0.707449 0.502272 -0.202177 210.027 207.972 -2.055 
8.0 -39.9694 -39.6795 0.2899 0 0 0 

 
IV. CONCLUSION  

The static analysis of a circular cylindrical shell subjected to internal hydrostatic pressure and a ring force 
was carried out using the Laplace transform. The forces and displacements for a typical cylindrical shell were 
computed and compared to those calculated from classical and initial value solutions. The results were found to 
agree very accurately. The introduction of a circumferential (transverse) ring stiffener considerably reduced the 
bending moment and hoop tension (which are the most significant items in design of cylindrical shell) due internal 
hydrostatic pressure. The optimum ring location was also established to be at 0.69 L (L is height of cylinder) 
measured from the top. Conclusively the Laplace transform proved to be less tedious and more time saving than its 
counterparts, the classical and initial value approaches, and well-conditioned for handling local forces. Comparison 
of the results of the present method and those of the method of IS 3370 showed no significant differences. 
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