INVESTIGATION INTO THE PROPERTIES AND STRUCTURE OF TERNARY BLENDS OF SAW DUST ASH AND SPONGE GOURD ASH IN MORTAR

S.P. Wasiu, C.A. Fapohunda, C.I. Madueke

Abstract


This study explores the utilization of ternary blends of sawdust ash (SDA) and sponge gourd ash (SGA) as partial replacement of cement in mortar.Comprehensive characterization of SDA and SGA, including their chemical composition, specific gravity, particle size distribution, and pozzolanic  activity, were carried out. Also, the fineness, soundness, and setting times of mortar containing the ternary blend of SDA and SGA were investigated. Further, microstructural investigations using X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy (SEM) were also conducted. The results showed that; the fineness of ternary blends of SDA and SGA increases with       SGA from 262.56 m²/kg to 459.81 m²/kg, the soundness of SDA and SGA blends decreases from 5.90 mm to 4.50 mm, the consistency decreased from 28.1 mm to 26.0 mm with increasing SGA, the initial and final setting times decreased from 98/216 minutes to 80/194 minutes with increasing SGA, SDA and SGA exhibit high silica and alumina content, as indicated by XRF results. The SEM analysis reveals particle sizes ranging from 0.1 ?m to 100 ?m for SDA and 10 ?m to 100 ?m for SGA. Compositionally, SDA consists of Graphite, Urea, Silicon Dioxide, and Englishite, while SGA comprises Quartz, Hanksite, Davyne, and Woodhouseite, displaying varying particle morphologies.

Keywords: Sawdust ash (SDA), Spongegourdash (SGA), Ternary blends, Pozzolanic activity,         Microstructure, Compressive strength, Splitting tensile strength, Flexural strength.


Full Text:

PDF

References


Afolabi, O. A. (2019). Pozzolanic Activity and Characteristic of "Saw Dust Ash (SDA)" as Partial Replacement of Cement for Concrete Production. Proceedings of the University of Lagos International Conference (FEIC 2019).

Ahmad, S., Ghazi, M. S. A., Syed, M., & Al-Osta, M. A. (2024). Utilization of fly ash with and without secondary additives for stabilizing expansive soils: A review. Results in Engineering, 22, 102079.

Ahmed, A. (2024) Assessing the effects of supplementary cementitious materials on concrete properties: a review. DiscovCivEng1,145 (2024).https://doi.org/10.1007/s44290024- 00154-z.

Ajagbe, W. O., Tijani, M. A., Arohunfegbe, I. S., & Akinleye, M. T. (2018). Assessment of Fine Aggregates from Different Sources in Ibadan and Environs for Concrete Production.Nigerian Journal of Technological Development, 15(1), 8-13.

Al-Bayati, A., Butrouna, K., Steffen, R. E., & Salman, B. (2020). Utilizing Graphite Powder to Improve Concrete Conductivity, Compressive Strength, and Workability. Construction Research Congress 2020, Tempe, Arizona. DOI: 10.1061/9780784482889.093

Alhijazi, M.; Safaei, B.; Zeeshan, Q.; Asmael, M.; Eyvazian, A.; Qin, Z. (2020). Recent Developments in Luffa Natural Fiber Composites: Review. Sustainability, 12, 7683. https://doi.org/10.3390/su12187683.

Al-Snafi, A. E. (2021). Traditional uses of Iraqi medicinal plants (part 2). International Journal of Biological and Pharmaceutical Sciences Archive, 02(01), 022-041. doi: (link unavailable.

Amran, M.; Fediuk, R.; Murali, G.; Vatin, N.; Al- Fakih, A. (2021). Sound-Absorbing Acoustic Concretes: A Review. Sustainability, 13, 10712. https://doi.org/10.3390/su131910712.

Arum C, Alabi SA, Arum RC (2023). Strength and durability assessment of laterized concrete made with recycled aggregates: A performance index approach. Res. Eng. Struct. Mater.; 9(1): 209-227.

Arum, R. C., Arum, C., & Alabi, S. A. (2022). The Highs and Lows of Incorporating Pozzolans into Concrete and Mortar: A Review on Strength and Durability. Nigerian Journal of Technology, 41(2), 197-211. doi: 10.4314/njt. v41i2.1.

ASTM C618 (2019). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete

ASTM C204-23. (2023). Standard Test Methods for Fineness of Hydraulic Cement by Blaine Air-Permeability Apparatus.

ASTM C151/C151M – 18, American Society for Testing and Materials, Standard Test Method for Autoclave Expansion of Hydraulic Cement. Annual Book of ASTM Standards, V.04.01, ASTM International, Pennsylvania, 2018, https://doi.org/10

ASTM C191-19. (2019). Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle.

ASTM C191-19/AASHTO T131. (2019). Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle

ASTM C618 (2019). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete

ASTM (2019) C150/C150M-(2019). Standard Specification for Portland Cement. West Conshohocken, PA: ASTM International.

ASTM (2012) C1602/C1602M-12. Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete. West Conshohocken, PA: ASTM International.

Ayuba, S., &Ngabea, S. A. (2023). Characteristic Properties of Self-Compacting Concrete (SCC) with Saw Dust Ash (SDA) and Millet Husk Ash (MHA) as Cement Replacement Ternary Blend. FUW Trends in Science & Technology Journal, 8(2), 196-202. doi: (not provided). e-ISSN: 24085162; p-ISSN: 20485170.

Ayuba, S., Uche, O. U. A., Haruna, S., & Mohammed, A. (2022). Durability properties of cement-saw dust ash (SDA) blended self-compacting concrete (SCC). Nigerian Journal of Technology, 41(2), 212-221. doi: 10.4314/njt. v41i2.2.

Bendezu Romero, L. M., Bahrami, A., Awoyera, P. O., Fadire, O., ValdiviesoValarde, A. Y., ...& Arunachalam, K. P. (2024). Exploring effects of supplementary cementitious materialson setting time, strength, and microscale properties of mortar. Discover Applied Sciences, 6, 583.

Bedov, O.; Andabaka, A.; Dragani?, S. (2025) Turning Agricultural Biomass Ash into a Valuable Resource in the Construction Industry—Exploring the Potential of Industrial Symbiosis. Buildings, 15, 273. https://doi.org/10.3390/buildings15020273.

BS EN 196-3:2016. Methods of testing cement. Determination of setting times and soundness. British Standards Institution

BSI (2011) BS EN 197-1:2011. Cement - Composition, specifications and conformity criteria for common cements. London: BSI.

BS 8500-2:2015+A1:2016 "Concrete. Complementary British Standard to BS EN 206. Specification for constituent materials and concrete.

BS 8500-1:2015+A2:2019 "Concrete. Complementary British Standard to BS EN 206. Method of specifying and guidance for the specifier"

BSI (2012). BS EN 450-1:2012. Fly ash for concrete. Definition, specifications and conformity criteria. British Standards Institution.

BSI (2015). BS 8500-2:2015+A1:2016. Concrete. Complementary British Standard to BS EN 206. Specification for constituent materials and concrete. British Standards Institution.

BSI (2015). BS 3892-1:2015+A1:2018. Pulverized-fuel ash. Specification for pulverized-fuel ash for use in concrete. British Standards Institution.

BSI (2015). BS 1014-1:2015. Testing concrete. Method for determination of compressive strength of concrete cores. British Standards Institution.

BSI (1990). BS 812-117:1990. Testing aggregates. Method for determination of water absorption. British Standards Institution

Dogar, S., Nayab, S., Farooq, M. Q., Said, A., Kamran, R., Duran, H., & Yameen, B. (2020). Utilization of Biomass Fly Ash for Improving Quality of Organic Dye-Contaminated Water. ACS Omega, 5(26), 15850-15864. doi: 10.1021/acsomega.0c00889.

Elyasigorji, F.; Farajiani, F.; HajipourManjili, M.; Lin, Q.; Elyasigorji, S.; Farhangi, V.; Tabatabai, H. (2023) Comprehensive Review of Direct and Indirect Pozzolanic Reactivity Testing Methods. Buildings, 13, 2789. https://doi.org/10.3390/buildings13112789.

Ettu, L. O., Mbajiorgu, M. S. W., Njoku, F. C., Ajoku, C. A., & Nwachukwu, K. C. (2013). Strength Variation of OPC-Saw Dust Ash Composites with Percentage Saw Dust Ash. Civil and Environmental Research, 3(9), 53.

Fadhil, B. S., & Ajmi, R. N. (2019). Scanning Electron Microscope (SEM) to Examine Characteristics Plants and Soil Evidence in Baghdad City, Iraq. Plant Archives, 19(Supplement 2), 927-930.

Fapohunda, C., Kilani, A., Adigo, B., Ajayi, L., Famodimu, B., Oladipupo, O., & Jeje, A. (2021). A Review of Some Agricultural Wastes in Nigeria for Sustainability in the Production of Structural Concrete. Journal of [Journal Name], 18(2).

Fapohunda, C., Osanyinlokun, O. E. and Abioye, A. O. (2023) “A Review of Structures and Performance of Ternary Blends of Rice Husk Ash and Some Wastes in Concrete”, Electronic Journal of Structural Engineering, 23(4), pp. 75–78. doi: 10.56748/ejse.23473.

Fapohunda, C., Akinbile, B., and Oyelade, A. A. (2018). Re-view of the Properties, Structural Characteristics and Application Potentials of Concrete Containing Wood Waste as Partial Replacement of one of its Constituent Material. YBL Journal of Built Environment, Vol. 6, No. 1, pp. 63–85.

Fapohunda, C. A., Amu, O. O., & Babarinde, O. F. (2019). Evaluation of Geotechnical and Structural Performance of Cement-Stabilized Soil with Saw Dust Ash (SDA). Arid Zone Journal of Engineering, Technology & Environment, 15(3), 628-637.

Fapohunda, C. A. & Daramola, D. D. (2019). Experimental Study of Some Structural Properties of Concrete with Fine Aggregate replaced Partially by Pulverized Termite Mound(PTM). JournalofKing Saud University Engineering Services, https://doi.org/10.1016/j.jksues.2019.05.005.

Fayissa, B., Gudina, O., &Yigezu, B. (2020). Application of Sawdust Ash as Filler Material in Asphaltic Concrete Production. Civil and Environmental Engineering, 16(2), 351-359. DOI: 10.2478/cee-2020-0035.

García, G., Cabrera, R., Rolón, J., Pichardo, R., & Thomas, C. (2024).Natural fibers as reinforcement of mortar and concrete: A systematic review from Central and South American regions. Journal of Building Engineering, 98, 111267. doi: 10.1016/j.jobe.2024.111267.

Ghazzawi, S.; Ghanem, H.; Khatib, J.; El Zahab, S.; Elkordi, A. (2024) Effect of Olive Waste Ash as a Partial Replacement of Cement on the Volume Stability of Cement Paste. Infrastructures, 9, 193. https://doi.org/10.3390/infrastructures9110193.

Gupta, S. et al. (2021). Review of the Effects of Supplementary Cementitious Materials and Chemical Additives on the Physical, Mechanical and Durability Properties of Hydraulic Concrete. Materials, 14(23), 7270. doi: 10.3390/ma14237270.

Guhl, A.C.; Greb, V.-G.; Schulz, B.; Bertau, M. (2020) An Improved Evaluation Strategy for Ash Analysis Using Scanning Electron Microscope Automated Mineralogy. Minerals, 10, 484. https://doi.org/10.3390/min10050484.

Haris, M.; Xiong, E.; Gao, W.; Samuel, M.A.; Sahar, N.U.; Saleem, A. (2025) Strengthening Reinforced Concrete Members Using FRP—Evaluating Fire Performance, Challenges, and Future Research Directions: A State-of-the-Art Review. Polymers, 17, 13. https://doi.org/10.3390/polym17010013.

Imtiaz, T.; Ahmed, A.; Hossain, M.S.; Faysal, M. (2020) Microstructure Analysis and Strength Characterization of Recycled Base and Sub-Base Materials Using Scanning Electron Microscope. Infrastructures, 5, 70. https://doi.org/10.3390/infrastructures5090070.

Jhatial, A.A.; Nováková, I.; Gjerløw, E. A (2023). Review on Emerging Cementitious Materials, ReactivityEvaluation and Treatment Methods. Buildings, 13, 526. https://doi.org/10.3390/buildings13020526.

Jubril, HA; Ojo, OM; Faloyo, OE (2024). Strength Characteristics of Concrete Produced by Replacing Sawdust as Fine Aggregate and Domestic Wastewater as Admixture. J. Appl. Sci. Environ. Manage., 28(11B Supplementary), 3839-3844. ISSN 1119-8362 (Print), 2659-1499 (Electronic). Available online at (link unavailable) and (link unavailable). Corresponding author: hassanadedayo1973@gmail.com (ORCID: (link unavailable)).

Kabir, H., Popoff, N. J., & Hooton, D. (2020). Evaluation of cement soundness using the ASTM C151 autoclave expansion test. Cement and Concrete Research, 106159. DOI: 10.1016/j.cemconres.2020.106159

Khan, K.; Amin, M.N.; Usman, M.; Imran, M.; Al-Faiad, M.A.; Shalabi, F.I. (2022) Effect of Fineness and Heat Treatment on the Pozzolanic Activity of Natural Volcanic Ash for Its Utilization as Supplementary Cementitious Materials. Crystals, 12, 302. https://doi.org/10.3390/cryst12020302.

Lee, Y.H.; Amran, M.; Lee, Y.Y.; Kueh, A.B.H.; Kiew, S.F.; Fediuk, R.; Vatin, N.; Vasilev, Y. (2021) Thermal Behavior and Energy Efficiency of Modified Concretes in the Tropical Climate: A Systemic Review. Sustainability, 13, 11957. https://doi.org/10.3390/su132111957.

Li, C., Wang, L., & Zhang, L. (2024). A Case Study in Natural Fiber Material (Luffa Sponge) Development Using E2-Material-Driven Design. Sustainability, 16(8), 3490.doi: 10.3390/su16083490.

Liang, Q.; Huang, X.; Zhang, L.; Yang, H. A (2024) Review on Research Progress of Corrosion Resistance of Alkali-ActivatedSlag Cement Concrete. Materials, 17, 5065. https://doi.org/10.3390/ma17205065.

Majeed, S.S. (2024). Formulating Eco-Friendly Foamed Mortar by Incorporating Sawdust Ash as a Partial Cement Replacement. Sustainability, 16, 2612. https://doi.org/10.3390/su16072612.

Majeed, S.S. (2024). Formulating Eco-Friendly Foamed Mortar by Incorporating Sawdust Ash as a Partial Cement Replacement. Sustainability, 16, 2612. https://doi.org/10.3390/su16072612.

Melo, E.C.R.d.; Camillo, M.d.O.; Marcelino, P.R.C.; Barbosa dos Santos da Silva, R.; Colares Firmino, T.; Ferreira de Oliveira, B.; Profeti, D.; Camposo Pereira, A.; Neves Monteiro, S.; Picanço Oliveira, M. (2022) Influence of Silanization Treatment of Sponge Gourd (Luffa cylindrica) Fibers on the Reinforcement of Polyester Composites: A Brief Report. Polymers, 14, 3311. https://doi.org/10.3390/polym14163311.

Marangu, J.M.; Sharma, M.; Scheinherrová, L.; Kafodya, I.; Mutai, V.K.; Latif, E.; Novelli, V.I.; Ashish, D.K.; Maddalena, R. (2024), Durability of Ternary Blended Concrete Incorporating Rice Husk Ash and Calcined Clay. Buildings, 14, 1201. https://doi.org/10.3390/buildings14051201.

Mithra M, Ramanathan P, Muthupriya P, Venkatasubramani R (2012) Flexural behaviour of reinforced self-compacting concrete containing GGBFS” ISSN: 2277-3754. Int J Engineering Innovation Technology 1(4):124–129.

Mithra S., Jayaatchaya R., Krithika. G, Sona R, (2022), Experimental Investigation on Concrete by Loofah Fiberas Reinforcement and Partial Replacement of Cement by Coconut Shell ASH. International Journal of Research in Engineering and Science (IJRES).

Mohamad, N., Muthusamy, K., Embong, R., Kusbiantoro, A., & Hashim, M. H. (2022). Environmental impact of cement production and Solutions: A review. Materials Today: Proceedings, 48(4), 741-746. doi: 10.1016/j.matpr.2021.02.212

Mohtadi, A.; Ghomeishi, M.; Dehghanbanadaki, A. (2024) Towards Sustainable Construction: Evaluating Thermal Conductivity in Advanced Foam Concrete Mixtures. Buildings, 14, 3636.https://doi.org/10.3390/buildings14113636.

Munir R, Khan B, Dastagir G, Uza NU. (2023). Implication of Scanning Electron Microscopy and Light Microscopy for Morphology of Some Selected Seed Drugs: As a Tool for Authentication. J Microscrostructural Ultrastructure. 2023 Feb 23;11(1): 60-67.doi: 10.4103/jmau.jmau_104_22. PMID: 37144167; PMCID: PMC10153735.

Munir R, Khan B, Dastagir G, Uza NU. (2023). Implication of Scanning Electron Microscopy and Light Microscopy for Morphology of Some Selected Seed Drugs: As a Tool for Authentication. J Microscrostructural Ultrastructure. 2023 Feb 23;11(1): 60-67.doi: 10.4103/jmau.jmau_104_22. PMID: 37144167; PMCID: PMC10153735.

Ned?la V, Tihla?íková E, Cápal P, Doležel J. (2024). Advanced environmental scanning electron microscopy reveals natural surface nano-morphology of condensed mitotic chromosomes in their native state. Sci Rep. 2024 Jun 6;14(1):12998. doi: 10.1038/s41598- 024-63515-9. PMID: 38844535; PMCID: PMC11156959.

Ogunyemi, T. C., C. M. Ekuma, J. E. Egwu, and D. M. Abbey. (2020). “Proximate and Mineral Composition of Sponge Gourd (LuffaCylindrica) Seed Grown in South-Western Nigeria”.Journal of Scientific Research and Reports 26 (4):61-67. https://doi.org/10.9734/jsrr/2020/v26i430248.

Olawale, S. O., Kareem, M. A., Muritala, H. T., Adebanjo, A. U., Alabi, O. O., Olawuyi, O. A., & Fadipe, O. O. (2021). Utilization of Iron Filings as Partial Replacements for Sand in Self-Compacting Concrete. Tanzania Journal of Science, 47(3). doi: 10.4314/tjs. v47i3.3.

Olugbenga, A. T. (2019). Performance of Saw Dust Ash Blended OPC Laterized Concrete in Sulphate Environment. American Journal of Engineering Research (AJER), 8(1), 146-152.

Omopariola, S. S., & Jimoh, A. A. (2023). Evaluation of Engineering Properties of Some Selected Aggregates in South Western Nigeria for Concrete Production. Nigerian Journal of Technology, 42(1), 92-98. doi: 10.4314/njtv42i1.11.

Osanyinlokun, O. E., Fapohunda, C. A., and Olaniyan, O. M. (2024). “Compressive, Bending and Shear Properties of Reinforced Concrete Beams containing Sawdust Ash as Partial Replacement of Cement”, Nigerian Journal of Technology, 2024; 43(1), pp.2 – 13; https://doi.org/10.4314/nj t.v43i1.2.

Osuya, D. O., & Mohammed, H. (2017). Evaluation of sawdust ash as a partial replacement for mineral filler in asphaltic concrete. Ife Journal of Science, 19(2), 23.

Quadri, A. I., & Alabi, O. (2020). Assessment of Sponge Gourd (Luffa Aegyptiaca) Fiber as a Polymer Reinforcement in Concrete. Journal of Composites and Energy Materials, 232358.1026. doi: 10.22034/JCEMA.2020.232358.1026.

Querido VA, d'Almeida JR, de Andrade Silva F. Development and Analysis of Sponge Gourd (Luffa cylindrica L.) Fiber-reinforced Cement Composites. Bio -Resources. 2019 Oct 31;14(4):9981-93.

Raghda Osama Abd-Al Ftah et.al (2022) “Assessment on structural and mechanical properties of reinforcement concrete beams prepared with luffa cylindrical fibre” case studies in construction material, Vol.11, Issue 08.

Raheem, A. A., Adedokun, S., Ajayi, B. R., Adedoyin, O. A., & Adegboyega, B. O. (2017). Application of Saw Dust Ash as Partial Replacement for Cement in the Production of Interlocking Paving Stones. International Journal of Sustainable Construction Engineering & Technology, 8, 1-11.

Rahman, A.; Khondoker, M.A.H. (2024). Effect of Treatment Methods on Material Properties and Performance of Sawdust-Concrete and Sawdust-Polymer Composites. Polymers, 16, 3289. https://doi.org/10.3390/polym16233289.

Ren, Z.; Li, D. (2023) Application of Steel Slag as an Aggregate in Concrete Production: A Review. Materials, 16, 5841. https://doi.org/10.3390/ma16175841.

Roh, S.; Kim, R.; Park, W.-J.; Ban, H. (2020) Environmental Evaluation of Concrete Containing Recycled and By-Product Aggregates Based on Life Cycle Assessment. Appl. Sci., 10, 7503. https://doi.org/10.3390/app10217503.

Suliman, N. H., Razak, A. A. A., Mansor, H., Alisibramulisi, A., & Amin, N. M. (2019). Concrete using sawdust as partial replacement of sand: Is it strong and does not endanger health? MATEC Web of Conferences, 258, 01015. doi: 10.1051/matecconf/201925801015.

Šupi? S, Malešev M, Radonjanin V, Bulatovi? V, Milovi? T. (2021) Reactivity and Pozzolanic Properties of Biomass Ashes Generated by Wheat and Soybean Straw Combustion. Materials (Basel). 2021 Feb 20;14(4):1004. doi: 10.3390/ma14041004. PMID: 33672665; PMCID: PMC7924322.

Tlegenov, R.B.; Niyazbekova, R.K.; Jexembayeva, A.E.; Korniejenko, K.; Aruova, L.B.; Aldabergenova, S.S.; Maykonov, A.S. (2024) The Effect of Fly Ash Additive on the Thermal Conductivity of Polystyrene Concrete. Buildings, 14, 2850. https://doi.org/10.3390/buildings14092850.

Tunell, A., Micklow, L., Scott, N., Furst, S., & Chang, C.-H. (2023). Identification of dust particles on a periodic nanostructured substrate using scanning electron microscope imaging. Journal of Vacuum Science & Technology B, 41(6), 062804. doi: 10.1116/6.0003043.

Yusuf, M.O. (2023), Characteristics of Silica Fume Nano Alumina Ternary Blended Mortar. Sustainability ,15, 14615. https://doi.org/10.3390/su151914615

Zhao, Y.; Qian, Y.; Zhong, G.; Wu, S.; Pan, S. A (2024) Thermal Characteristics Study of Typical Industrial Oil Based on Thermogravimetric-Differential Scanning Calorimetry (TG- DSC). Fire, 7, 401. https://doi.org/10.3390/fire7110401.


Refbacks

  • There are currently no refbacks.


Copyright © 2022-2025. Department of Civil Engineering, Nnamdi Azikiwe University. All Rights Reserved.. 

Powered by Myrasoft Systems Ltd.(http://www.myrasoft.com.ng)