ASSESSMENT OF EMBANKMENT EROSION OF LATERITIC SOIL BIO-TREATED WITH BACILLUS THURINGIENSIS
Abstract
The research evaluated the potential of ureolytic organism (Bacillus thuringiensis, Bt) through microbial induced carbonate precipitation technique in mitigating lateritic soil erosion. The urease activity and the pH of the varying bacterial (0, 1.5 × 108, 6.0 × 108, 1.2 × 109, 1.8 × 109, and 2.4 × 109 cells/ml) and cementation solution, Cs(0.25 M, 0.5 M, 0.75 M and 1 M) mixtures was evaluated. The rate of soil detachment of natural and bio-treated modelled embankment slopes was tested using a fabricated jet erosion device in the laboratory. The results indicated that the urease activity evaluated using electrical conductivity method increased with increase in Cs and Bt density in solutions. The increase in EC values for the Cs is in the order: 1 M 0.75 M 0.5 M 0.25 M regardless of the bacterial population in solution mixtures. The recorded pH values fall within the range (i.e., 6 - 9) that reportedly favours an effective MICP process. The rate of soil detachment as well as total erosion mass decreased with higher bio-treatment with Bt - Cs. Therefore, lateritic soil bio-treated with Bacillusthuringiensis (Bt) (2.4 × 109 cells/ml) - cementation solution concentration (Cs) (0.75 M) using the mixing method can be used to mitigate embankment erosion rate of lateritic soil.
Keywords:Bio-treatment,Embankment, Erosion, Lateritic soil, Bacillusthuringiensis
Full Text:
PDFReferences
Amadi, A. A., Osinubi, K. J., and Okoro, J. I. (2023). "Hydraulic conductivity of unsaturated specimens of lateritic soil bentonite mixtures.” Geotechnical and Geological Engineering (GEGE), Springer Nature Switzerland. https://doi.org/10.1007/s10706-023-02524-3
Basha, E. A., Hashim, R., Mahmud, H. B., and Muntohar, A. S. (2005). Stabilization of residual soil with rice husk ash and cement. Construction and Building Materials, 19(6), 448-453.
Devrani, R., Dubey, A. A., Ravi, K., and Sahoo, L. (2021). Applications of bio-cementation and biopolymerization for aeolian erosion control. Journal of Arid Environments 187,104433. https://doi.org/10.1016/j.jar idenv.2020.104433
Dubey A. A., Lewis, J. H., Ravi, K., Dhami, N. K. and Mukherje, A. (2022). Biopolymer-biocement composite treatment for stabilisation of soil against both current and wave erosion. Acta Geotechnica17, 5391–5410. https://doi.org/10.1007/s11440-022-01536-2
Etim, R. K., Eberemu, A. O., and Osinubi, K. J. (2017). Stabilization of black cotten Soil with Lime and Iron Ore Tailings admixture. Transportation Geotechnics, 10, 85 – 95.
Eryürük, K. (2022). Investigating the urease activity of Sporosarcinapasteurii for potential usage of microbially induced calcium carbonate precipitation. European Journal of Science and Technology, 34, 1-4. https://doi.org/10.31590/ejosat.1061497
Gadzama, E. W., Ijimdiya, T. S., Eberemu, A. O., and Osinubi, K. J. (2022). Influence of Injection Pressure on the Hydraulic Conductivity of Compacted Bio-cemented Lateritic Soil. Nigeria Journal of Engineering Science and Technology Research 8 (1), 29-41
Gadzama,E. W., Salawudeen, A. T., Eberemu, A. O., Ijimdiya T. S., and Osinubi, K. J. (2023). Comparative Evaluation of Hydraulic Conductivity of Compacted Bio-cemented Lateritic Soil Using Nature Inspired Optimization Algorithms. Savannah Journal of Science and Engineering Technology 1(5). 263-268.
Ganguly, D., Prasanna, K. L. V., Neelapu, S., and Goswami, G. (2023). Role of microbes in Bioremediation. In: Verma, P. (eds) Industrial Microbiology and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2816-3_19
Idham H., Vivi B., and Rustamaji R. M. (2023). Study on the Effects of Soil-Cement Stabilization in the Lower Road Foundation Layer Using Spent Bleaching Earth Stabilizer in Terms of Soil Physical Properties. Jurnal Teknik Sipil, 23(3), 350-358. http://dx.doi.org/10.26418/jts.v23i3.65
Jain, S. (2021). An Overview of Factors Influencing Microbially Induced Carbonate Precipitation for Its Field Implementation. In: Achal, V., Chin, C.S. (eds.) Building Materials for Sustainable and Ecological Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-1706-5_5
Jain, S. (2023). Suitability of Various Ureolytic Microbes for Potential Soil Strengthening via Biocementation. Journal of Hazardous Toxic and Radioactive Waste, 28(1). https://doi.org/10.1061/JHTRBP.HZENG-1233
Karol, R. H. (2003). Chemical Grouting and Soil Stabilization. pp. 558 Marcel Dekker, New York.
Lai, H., Cui, M. J. and Chu, J. (2022). Effect of pH on soil improvement using one-phase-low-pH MICP or EICP biocementation method. Acta Geotechnica.https://doi.org/10.1007/s11440-022-01759-3
Lauchnor, E. G., Topp, D. M., Parker, A. E., and Gerlach, R. (2015). Whole cell kinetics of ureolysis by Sporosarcinapasteurii. Journal of Applied Microbiology,118(6), 1321–1332. https://doi.org/10.1111/jam.12804
Liu, J., Shi, B., Jiang, H., Huang, H., Wang, G., and Kamai, T. (2011). Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer. Engineering Geology-Elsevier, 117(1), 114-120.
Liu, B., Xie, Y. H., Tang, C. S., Pan, X. H., Jiang, N. J., Singh, D. N., Cheng, Y. J., and Shi, B. (2021). Bio-mediated method for improving surface erosion resistance of clayey soils. Engineering geology293(19), 1-10. https://doi.org/10.1016/j.enggeo.2021.106295
Martinez, A. and Frost, D. (2023). Bio-inspired Anchors and Deep Foundations. GeostrataMagazine 27(4), 30-39. https://ascelibrary.org/doi/10.1061/geosek.0000493
McCleskey, R. B., Nordstrom, D. K., Ryan, J. N., and Ball, J. W. (2012). A new method of calculating electrical conductivity with applications to natural waters. Geochimica et Cosmochimica. Acta, 77, 369?382. https://doi.org/10.1016/j.gca.2011.10.031
Montoya, B. M. (2023). Biocementation for Coastal Protection. GeoStrata Magazine, 27(4), 14 – 21. https://doi.org/10.1061/geosek.0000490
Naeimi M., Chu, J., Khosroshahi, M., and Zenouzi, L. K. (2023). Soil stabilization for dunes fixation using microbially induced calcium carbonate precipitation. Geoderma429(2), 116183. https://doi.org/10.1016/j.geoderma.2022.116183
Nassar, M. K., Deviyani G., Bastani M., Ginn T. R., Babak, S., Gomez, M. G., Charles, M. R. Graddy, Doug, C. N., and DeJong, J. T. (2018). Large-Scale Experiments in Microbially Induced Calcite Precipitation (MICP): Reactive Transport Model Development and Prediction. Water Resources Research-American Geophysical Union http://dx.doi.org/10.1002/2017WR021488
Okorafor, O. O., Akinbile, C. O., Adeyemo, A. J. (2017). Soil Erosion in South-Eastern Nigeria: A Review. Scientific Research Journal (SCIRJ), 5(9). ISSN 2201-2796.
Omoregie, A. I., Muda, K., Ong, D. E. L., Ojuri, O. O., Bakri, M. K. B., Rahman, M. R., Basri, H. F., and Ling, Y. E. (2023). Soil bio-cementation treatment strategies: state-of-the-art review. Geotechnical Research, https://doi.org/10.1680/jgere.22.00051
Rusznyak, A., Akob, D. M., Nietzsche, S., Eusterhues, K., Totsche, K. U., Neu, T. R., Frosch, T., Popp, J., Keiner, R., Geletneky, J., Katzschmann, L., Schulze E. D. and Kusel, K. (2012). Calcite biomineralization by bacterial isolates from the recently discovered pristine karsticHerrenberg cave. Applied and Environmental Microbiology-American Society for Microbiology, 78, 1157–1167. http://dx.doi.org/10.1128/AEM.06568-11.
Stocks-Fischer, S., Galinat, J. K., and Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry 31(11), 1563–1571. https://doi.org/10.1016/S0038-0717(99)00082-6
Sun, X., Miao, L., Tong, T., and Wang, C. (2018). Improvement of Microbial-Induced Calcium Carbonate Precipitation Technology for Sand Solidification. Journal of Materials in Civil Engineering, 30(11), 1-8. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002507
Vinay, K., Hamed, K. T., and Edward, K. J. (2023). An Improved Method for Determining Urease Activity from Electrical Conductivity Measurements. ACS Omega8(15), 13791?13798. http://dx.doi.org/10.1021/acsomega.2c08152
Whiffin, V. S. (2004). Microbial CaCO3 Precipitation for the Production of Bio-cement. Ph.D. dissertation, Murdoch University, Perth, Australia. pp. 147. Retrieved from https://researchrepository.murdoch. edu.au/id/eprint/399/.
Yohanna, P., Ijimdiya, T. S., Eberemu, A.O., and Osinubi, K. J. (2022). Influence of Compactive Effort on the Hydraulic performance of Tropical Red Soil-Bacillus Coagulans Mixtures. Journal of Civil Engineering, 15(1), 62-87.
Zhaoyu W., Zhang, N., Jin, Y., Li, Q. and Xu, J. (2020). Application of microbially induced calcium carbonate precipitation (MICP) in sand embankments for scouring/ erosion control. Marine Georesources& Geotechnology, https://doi.org/10.1080/1064119X.2020.1850949
Refbacks
- There are currently no refbacks.
Copyright © 2022-2025. Department of Civil Engineering, Nnamdi Azikiwe University. All Rights Reserved..